

27-31 May 2014, MAP Collab. Meeting Fermilab, Batavia, IL

Pulsed Dipole Design and Tests (page 1)

27-31 May 2014, MAP Collab. Meeting Fermilab, Batavia, IL

Pulsed Dipole Design and Tests (page 2)

Latest work: Reduce coil losses with transposed strands

Standard transposition to avoid excessive eddy loss; The conductors a, b, c, and d making up one turn are transposed into different positions on subsequent turns in a coil to equalise flux linkage.

Box 2: Transposition of conductors

Neil Marks transposes strands Same flux through each loop Low longitudinal eddy currents

27-31 May 2014, MAP Collab. Meeting Fermilab, Batavia, IL

Pulsed Dipole Design and Tests (page 3)

In Progress: Larger capacitor bank for larger dipole #3 gap

• Power supply with fast 1200 volt, 600 amp IGBT switch.

27-31 May 2014, MAP Collab. Meeting Fermilab, Batavia, IL

Pulsed Dipole Design and Tests (page 4)

D. J. Summers U. of Mississippi–Oxford New: Rogowski pole face end profile to lower eddy currents

• Rogowski: $y = g/2 + (g/\pi) \exp((\pi x/g) - 1)$, g = 6mm gap End profile prevents field lines from crossing steel laminations Whole point of thin laminations depends on parallel fields Modeling convenience: Return yoke is actually rotated 90⁰

27-31 May 2014, MAP Collab. Meeting Fermilab, Batavia, IL

Pulsed Dipole Design and Tests (page 5)

27-31 May 2014, MAP Collab. Meeting Fermilab, Batavia, IL

Pulsed Dipole Design and Tests (page 6)

New: Uniformity approaches 1:10,000 @ 1.8T with bumps

27-31 May 2014, MAP Collab. Meeting Fermilab, Batavia, IL