

Acceleration Concept Specifications

J. Scott Berg Brookhaven National Laboratory MAP 2014 Spring Meeting 30 May 2014

Muon Accelerators

NUON Acce/erag

rogram

- Three classes of machines
 - NuMAX: neutrino factory to 5 GeV
 - Higgs factory: 63 GeV collider
 - High energy colliders: 1.5, 3, ≈6 TeV, and higher CoM
- Four acceleration subsystems
 - Linacs for NuMAX
 - RLA to reach 63 GeV
 - Low energy acceleration for colliders
 - High energy acceleration beyond 63 GeV: pulsed synchrotrons
- Some acceleration subsystems can be reused for different machines

BROOKHAVEN NATIONAL LABORATORY Factors Governing Design Choices

- Sufficient longitudinal (and sometimes transverse) acceptance
- High average gradient to limit decays
- Limiting emittance growth
- Reducing impact of collective effects
- Cost control

	NuMAX	Higgs	1.5 TeV	3 TeV	≈6 TeV
$E_{\rm max}~({\rm GeV})$	5	63	750	1500	≈3000
ϵ_{\perp} (μ m)	2600	200–400	25	25	25
ϵ_{\parallel} (mm)	24	1.0–1.5	70	70	70

Frequency (MHz)	325	650	975	1300
Gradient (MV/m)	20	25	30	35
Cells per cavity	4	5	7	9
Input power per cavity	1.2			

NuMAX Linac

- Accelerates muons from front end to 5 GeV
 - Assumes some 6-D cooling of both signs
- 325 MHz SRF linac for initial muon acceleration
 - Large longitudinal and transverse acceptance
- 650 MHz SRF linac to final energy (5 GeV)
 Shared with H⁻ beam
- Double chicane between these linacs
 - One charge delayed going from 325 to 650 MHz (bunch train)
 - Additional bunch compression

NuMAX Linac: Issues

- Linac designed based solely on muons
- Compatibility with H⁻
 - H⁻ stripping (unusually strong focusing)
 - Intrabeam scattering
 - Lorentz stripping: magnets and RF
 - Power requirements due to differing pulse/current structures (RF session later today)
 - Other H⁻ compatibility issues (later this session)
- Energy deposition—discussed in review
 - Magnitude and localization
 - Cavities (SC!) can't be shielded!
 - Problem everywhere, not just NuMAX linac
 - Plan to address in 325 MHz initial linac

NuMAX Linac: Issues

• Replace initial cooling with warm acceleration???

- Dogbone RLA accelerating to 63 GeV
- Compatible with both Higgs factory and high energy collider beams
 - Must accept 70 mm longitudinal emittance of high energy colliders
 - 5 GeV injection for Higgs beam (from NuMAX), may be higher for high energy collider beam
- Beam loading limits passes
 - 2×10^{12} muons per sign
 - No time to top off RF
 - 9 linac passes for 325 MHz
 - 3 linac passes for 650 MHz

- Next step is to choose frequency
 - Look approximately cost-neutral
 - Much easier switchyard for 650 MHz
 - Concern with longitudinal acceptance for 650 MHz solution, checking

- Acceleration to 750 GeV, 1.5 TeV, \approx 3 TeV
 - Highest energy chosen to fit on Fermilab site
- Average acceleration rate at least 3.5 MeV/m
 - Keep decays to required level
- Pulsed dipole field limited to 1.5 T
- Two types: ordinary and hybrid
 - Ordinary: fields (almost) proportional to momentum
 - Hybrid: interleave 10 T fixed dipoles with bipolar pulsed dipoles

BROOKHAVEN NATIONAL LABORATORY Pulsed Synchrotrons: Configuration

Program

- Accepts beam from 63 GeV RLA
- Two stages to get to 750 GeV
 - One ordinary, one hybrid
 - Share tunnel
- Hybrid ring reaching 1.5 TeV
- Hybrid ring reaching maximum energy fitting on Fermilab site
 - Some sacrifice on decays to get to highest energy

Output energy (GeV)	≈375	750	1500	≈3000
Туре	Ordinary	Hybrid	Hybrid	Hybrid

BROOKHAVEN NATIONAL LABORATORY Pulsed Synchroton: Lattice Design

Nuon Accelerator Arogram

- Interleaved arc cells and linacs
- Maintain constant tune through acceleration
- Zero dispersion in linacs
- Correct global chromaticity (collective effects)
- Maintain high synchrotron tune (collective effects)
- Reduce beam excursion
- Have sufficient longitudinal acceptance
- Have sufficient accelerating gradient
 - Energy is discrete, magnet fields are continuous
 - Matches, tunes, etc. will not be exact
 - Want as many acceleration steps as is reasonable
 - Compact arc cells

- Unit cell with arc and linac
- Minimum amount of bend per cell to create
 - First-order achromat
 - Cancellation of sextupole geometric nonlinearities
- Arc is 2π achromat with four $\pi/2$ FODO cells
 - D quads on ends to minimize horizontal orbit excursion
 - 3 sextuple families to correct
 - Chromaticity for full cell
 - Second-order dispersion
- Linac has 3 internal quads, different from arc quads
 - Permits variation of cell tune

Cell:

DL/2RF FL RF B F B D B F D B D/2

- Accelerate from final cooling (very low energy) to $\approx \text{GeV}$
- Initially use RF systems and lattices that are similar to those in final cooling, but in reverse
 - Large longitudinal emittances
- Switch to superconducting RF at higher energy
 - May go straight into an RLA for larger longitudinal acceptance
- Inject into RLA from Higgs factory
- Probably can't use NuMAX linac (longitudinal acceptance)
- Won't start designs until final cooling defined

Status Summary

NuMAX	325 MHz done. 650 MHz needs
linac	matches and phasing. Chicane
	parameters to be finalized.
RLA to	Next: choose 325 or 650 MHz based
63 GeV	on longitudinal dynamics
Pulsed	Next: choosing lattice parameters
synchrotron	
Low energy	Awaiting final cooling

- Details of NuMAX design
- Discussion: compatibility of muon design of NuMAX linac with H⁻ beam
- Discussion: plan to look at energy deposition
- Joint RF session
 - Superconducting RF status
 - Discussion: RF power for both muon beam and H⁻ beam
- Joint magnet session: pulsed dipoles