

GH2-filled 325 MHz Helical FOFO Snake for Initial Stage of 6D Ionization Cooling

Y. Alexahin (FNAL APC)

MAP 2014 Spring Meeting, Fermilab May 27-31, 2014

Motivation

- GH2-filled RF offers a higher Gradient, gas cooling of Be windows particularly important for 325 MHz RF use HCC for 6D cooling
- Direct matching of HCC to the Front End leads to high losses due to transition crossing with large momentum spread
- Charge separation will be much easier after initial 6D cooling
- With initial 6D cooling the muon acceleration for NF will be much easier than with 4D cooling

Differences with VRF HFOFO snake reported last October:

- Larger cell length (4.2m vs 3.72m) \Rightarrow higher < β_{\perp} >
- \Rightarrow smaller beam angular spread
- \Rightarrow weaker the momentum-betatron amplitude correlation
- \Rightarrow lower current in solenoids
- Smaller solenoids pitch angle (2.5mrad vs 3mrad)
- Longer solenoids (30cm vs 24cm)
- \Rightarrow further reduction in current density in solenoids (94.6 A/mm²)
- \Rightarrow smoother magnetic field
- Longer RF cavities (25cm vs 22cm)

Beam from Dave's new rotator

Muon beam parameters obtained with Gaussian fit*:

	N	N	N	p ^(central)	σ _p MeV/c	σ⊥		ε _{mN}		8 _{6D}
μ+	11755	7998	7329	248.0	29.8	7.6	1.2	2.2	2.4	6.2
μ-	12396	9020	8248	248.8	28.2	7.4	1.2	2.1	2.2	5.6

 β_{\perp} =82.8 cm for p=248.4 MeV/c Bz=2T

N.B.: There is a large imbalance in the transverse normal mode emittances, can it be used for better matching?

*) For comparison the r.m.s. emittances of the μ + normal modes after 150 < p (MeV/c) < 360 cut are: 1.2, 2.1, 5.0 (cm); description of the fitting procedure can be found in MAP-doc-4358

Major steps:

- Using Methodical Ionization Cooling Channel Design (MICCD, a Mathematica code) determine parameters of a periodic channel :
 - Geometry $\Rightarrow \beta_{\perp}$
 - Long. magnetic field \Rightarrow betatron tunes
 - Solenoid pitch & LiH absorber wedge angle \Rightarrow cooling rates and equilibrium emittances
- Using Mathematica find satisfactory transition from constant Bz in the front end to alternating field in the snake
 - match β_{\perp} for as wide momentum range as possible
- Create G4BL (ICOOL) description of the matching region and (quazi)periodic channel (including absorbers and RF)
- Adjust RF timing to achieve the desired (un-algorithmic) momentum vs z – check β_{\perp} -matching with varying momentum!
- Adjust pitch and yaw of the first few solenoids to put both muon signs on their proper orbits in the periodic channel
 - method for dispersion matching in a lattice with high synchrotron tune?
- Launch distribution of particles from the front end and see the result:

HFOFO period

coils: Rin=42cm, Rout=60cm, L=30cm; RF: f=325MHz, L=2×25cm; LiH wedges

- 325 MHz cavities easily fit inside solenoids
- The idea: create rotating B_{\perp} field by periodically tilting solenoids, e.g. with 6-solenoid period.
- Periodic orbits for μ + and μ look exactly the same, just shifted by a half period (3 solenoids), as μ in solenoids 4, 5, 6 see exactly the same forces as μ + in solenoids 1, 2, 3 and vice versa.
- With tune $Q_1 > 1$ (per period) $\mathbf{r} \cdot \mathbf{D} > 0$
- \Rightarrow muons with higher momentum make a longer path

 \Rightarrow longitudinal cooling achieved even with planar absorbers

• To enhance longitudinal cooling LiH wedge absorbers can be added in such a way that they work for both μ + and μ - (here wedge angle = 0.18rad)

Tunes and Emittances in a Periodic HFOFO Channel

Mode		П	Ш
Tune	1.2271 + 0.0100 i	1.2375 + 0.0036 i	0.1886 + 0.0049 i
Emittance (mm)	2.28	6.13	1.93

Table: normal mode tunes and normalized equilibrium emittances w/o equalization (analytics).

The transverse normal modes (I and II) cooling rates and equilibrium emittances can be equalized with the help of a unipolar quadrupole field

 μ + transverse β -functions with no (top) and with constant quadrupole field (bottom) of indicated strength. Strong β -beat is excited (Fig. 2) increasing slightly the 4D emittance

β_{\perp} -function matching

Magnetic field in the transition area (left) and β -function for constant momentum (right)

Total momentum of the reference particle in the beginning of the channel (left) and solution of Eq.(1) with such momentum dependence (right).

7

Momentum and orbit matching

p₀ [MeV/c]

Momentum of reference particle (blue) and target value (red). Adjustment made by RF timing (gradient fixed).

Reference particle trajectory (red – x, blue – y), inclination of solenoids 3-9 was used for placing μ^+ and μ^- on their periodic orbits simultaneously.

the (residual) effect of momentum-betatron amplitude correlation

Cooling & Transmission (G4BL)

Normalized emittances (cm) from Gaussian fit: $\mu^{\scriptscriptstyle +}$ - solid lines, $\mu^{\scriptscriptstyle -}$ - dashed lines.

Transmission as a ratio of the number of muons in the Gaussian core: red solid line - μ^+ , blue dashed line - μ^- .

Final/Initial values (Gaussian fit):

	N ^(total)	N ^{(150<p<360)< sup=""></p<360)<>}	N ^(core)	p ^(cnt) , MeV/c	ε _{mN} , cm			ε _{6D} , cm³
μ+	5378/11755	5167/7998	5010/7329	208.2/248.0	0.19/1.19	0.36/2.19	0.76/2.38	0.051/6.22
μ-	5896/12396	5743/9020	5499/8248	207.7/248.8	0.16/1.22	0.46/2.10	0.72/2.19	0.051/5.59

Muon Collider Design – Y.Alexahin,

Initial/Final Phase Space Distributions

Initial μ + beam (blue) and cooled beam in the 2T exit solenoid (red). All bunches were projected onto the same RF bucket in the right plot. No cuts applied

Reacceleration to 230 MeV/c

For charge separation and subsequent cooling in HCC a higher momentum can be beneficial. A possibility of reacceleration after initial cooling in HFOFO was considered since keeping momentum ~ constant all the way increases the losses.

Momentum of reference particle (blue) and target value (red). Adjustment made by RF timing (gradient fixed).

	N ^(total)	N ^{(150<p<360)< sup=""></p<360)<>}	N ^(core)	p ^(cnt) , MeV/c	σ _p , MeV/c	ε _{6D} , cm³			
μ + no reacceleration	5378	5167	5010	208.2	16.1	0.051			
μ + with reacceleration	5320	5107	4925	236.5	17.2	0.050			
Still there is a noticeable hit on Gaussian core									

Section with Higher β_{\perp} (first look)

Composition of considered above stage 1 (left) and new "stage 0" with higher β_{\perp} (right)

Using the present first version of "stage 0" for cooling down to $\varepsilon_{6D} \sim 3 \text{ cm}^3$ will allow for ~5% increase in the Gaussian core intensity.

Hopefully this number can be further increased by optimization.

The main difficulty with "stage 0" is very high synchrotron tune $Q_{III} \sim 0.3$ (now there is $6 \times 3 = 18$ RF cavities / period)

- The present 1-stage HFOFO design cools both μ + and μ providing
 - $\sqrt{6}$ 6D emittance reduction by two orders of magnitude in ~ 130m
 - $\sqrt{10}$ transmission ~47% if long high-momentum tails are counted and ~68% for Gaussian core
- Optimum transmission requires the muon momentum to be low, muons can be re-accelerated after cooling if needed
- \bullet Transmission can be improved by a few more %% by adding a "stage 0" with higher β_{\perp}
- A "stage 2" can be appended with shorter RF cavities (say, 15 cm in length) \Rightarrow smaller period length \Rightarrow smaller β_{\perp} -function
 - \Rightarrow 6D emittance reduction by another factor 3 to 5
- GH2-filled Front End with earlier HFOFO snake introduction to increase momentum acceptance?