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Motivation

e GH2-filled RF offers a higher Gradient, gas cooling of Be windows particularly
important for 325 MHz RF — use HCC for 6D cooling

e Direct matching of HCC to the Front End leads to high losses due to transition crossing
with large momentum spread

e Charge separation will be much easier after initial 6D cooling

e With initial 6D cooling the muon acceleration for NF will be much easier than with 4D
cooling

Differences with VRF HFOFO snake reported last October:

e Larger cell length (4.2m vs 3.72m) = higher <3, >

= smaller beam angular spread
— weaker the momentum-betatron amplitude correlation
= lower current in solenoids

e Smaller solenoids pitch angle (2.5mrad vs 3mrad)
e Longer solenoids (30cm vs 24cm)

= further reduction in current density in solenoids (94.6 A/mm?)
= smoother magnetic field

e Longer RF cavities (25cm vs 22cm)
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Beam from Dave’s new rotator
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Muon beam parameters obtained with Gaussian fit*:

p* 11755 7998 7329 248.0 29.8 7.6 12122]24|6.2
w 12396 9020 8248 248.8 28.2 7.4 12 (21]22]|56

,=82.8cm for p=248.4 MeV/c Bz=2T

N.B.: There is a large imbalance in the transverse normal mode emittances,
can it be used for better matching?

*) For comparison the r.m.s. emittances of the u+ normal modes after 150 < p (MeV/c) < 360 cut are: 1.2, 2.1, 5.0 (cm);
description of the fitting procedure can be found in MAP-doc-4358
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Procedure for HFOFO channel design

Major steps:

e Using Methodical lonization Cooling Channel Design (MICCD, a Mathematica

code) determine parameters of a periodic channel :
— Geometry = 3,
— Long. magnetic field = betatron tunes
— Solenoid pitch & LiH absorber wedge angle = cooling rates and equilibrium emittances

e Using Mathematica find satisfactory transition from constant Bz in the front

end to alternating field in the snake
—match B, for as wide momentum range as possible

e Create G4BL (ICOOL) description of the matching region and (quazi)periodic
channel (including absorbers and RF)

e Adjust RF timing to achieve the desired (un-algorithmic) momentum vs z
— check 3, -matching with varying momentum!

e Adjust pitch and yaw of the first few solenoids to put both muon signs on their

proper orbits in the periodic channel
— method for dispersion matching in a lattice with high synchrotron tune?

e Launch distribution of particles from the front end and see the result:

®
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HFOFOQO period

coils: R,=42cm, R, .=60cm, L=30cm; RF:f=325MHz, L=2x25cm; LiH wedges

® 325 MHz cavities easily fit inside solenoids

e The idea: create rotating B, field by
periodically tilting solenoids, e.g. with 6-solenoid
period.

e Periodic orbits for pu+ and p— look exactly the
same, just shifted by a half period (3 solenoids),
as pu—in solenoids 4, 5, 6 see exactly the same
B, forces as p+ in solenoids 1, 2, 3 and vice versa.
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More detail can be found in MAP-doc-4377
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Tunes and Emittances in a Periodic HFOFO Channel

1.2271 +0.0100 i

1.2375 +0.0036 i

0.1886 + 0.0049 i

2.28

6.13

1.93

Table: normal mode tunes and normalized equilibrium emittances w/o equalization (analytics).

The transverse normal modes (I and Il) cooling rates and equilibrium emittances can be equalized
with the help of a unipolar quadrupole field
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u+ transverse B-functions with no (top) and with constant quadrupole field (bottom) of indicated strength.
Strong B-beat is excited (Fig. 2) increasing slightly the 4D emittance
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B, -function matching
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Magnetic field in the transition area (left) and B-function for constant momentum (right)
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Total momentum of the reference particle in the beginning of the channel (left) and solution of Eq.(1) with such
momentum dependence (right).
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Momentum and orbit matching
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Momentum of reference particle (blue) and target value (red). Reference particle trajectory (red —x, blue —y),
Adjustment made by RF timing (gradient fixed). inclination of solenoids 3-9 was used for placing u* and p~
on their periodic orbits simultaneously.
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With real beam the RF timing had to be readjusted to compensate for
the (residual) effect of momentum-betatron amplitude correlation
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Cooling & Transmission (G4BL)

gy (cm) N(z)/N(0)
100

0% F

decays on!

0w
0 |-
0 -
o7

am -

Transmission as a ratio of the number of muons
in the Gaussian core: red solid line - u*, blue
dashed line - u-.

Normalized emittances (cm) from Gaussian fit:
u* - solid lines, u~ - dashed lines.

Final/Initial values (Gaussian fit):

N (total) N (150<p<360) N(core) p'ct), MeV/c

ut | 5378/11755 5167/7998 5010/7329 208.2/248.0 0.19/1.19 0.36/2.19 0.76/2.38 | 0.051/6.22

u | 5896/12396 5743/9020 5499/8248 207.7/248.8 0.16/1.22 0.46/2.10 0.72/2.19 | 0.051/5.59
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Initial/Final Phase Space Distributions
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Initial p+ beam (blue) and cooled beam in the 2T exit solenoid (red). All bunches were projected
onto the same RF bucket in the right plot. No cuts applied
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Reacceleration to 230 MeV/c

For charge separation and subsequent cooling in HCC a higher momentum can be beneficial.
A possibility of reacceleration after initial cooling in HFOFO was considered since keeping
momentum ~ constant all the way increases the losses.
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Momentum of reference particle (blue) and target value (red).
Adjustment made by RF timing (gradient fixed).

5378 5167 5010 208.2 16.1 0.051
5320 5107 4925 236.5 172 0.050

/

Still there is a noticeable hit on Gaussian core
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Section with Higher B, (first look)

J=94.6 A/mm? 1=40.7 A/mm?
30cm
—_————————
Rout=
Routs 90cm 50cm
60cm
) 20 Rin=
Rin= cm 60cm
42cm >
_________________ 50cm 75cm
70cm 95cm

Composition of considered above stage 1 (left) and new “stage 0” with higher 3, (right)

N(core)

Using the present first version of “stage 0”
for cooling down to g ~ 3 cm?® will allow
for 5% increase in the Gaussian core
intensity.

Hopefully this number can be further
increased by optimization.

The main difficulty with “stage 0” is very
high synchrotron tune Q;,~ 0.3 (now there
is 6 x 3 = 18 RF cavities / period)

1 2 3 4 5 6

€gp (CM3)
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Summary & Outlook

e The present 1-stage HFOFO design cools both p+ and p— providing
\ 6D emittance reduction by two orders of magnitude in ~ 130m
\ transmission ~47% if long high-momentum tails are counted and ~68%
for Gaussian core

e Optimum transmission requires the muon momentum to be low,
muons can be re-accelerated after cooling if needed

e Transmission can be improved by a few more %% by adding a “stage 0” with
higher B,

e A “stage 2” can be appended with shorter RF cavities (say, 15 cm in length)
= smaller period length = smaller 3, -function
= 6D emittance reduction by another factor 3to 5

e GH2-filled Front End with earlier HFOFO snhake introduction to increase
momentum acceptance?
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