### Magnet requirements and limitations

Soren Prestemon Lawrence Berkeley National Laboratory



# Outline



- Vacuum cooling channel concept
- Magnet design requirements
- Assumptions for conceptual design
- First design layout:
  - Magnetic performance and issues
  - Mechanical performance and issues
- Summary

### Special thanks to Holger Witte (BNL) and Frank Borgnolutti (LBNL) who performed the analyses presented here

# Cooling channel magnets





111111

BERKELEY

z (m)

0.6

z (m)



Layout (from D. Stratakis)









.....

Soren Prestemon-LBNL



Specific field profile to satisfy requirements for transverse cooling and longitudinal-transverse emittance exchange

<u>Magnet design requirements</u>

- Design must be "realizable":
  - Realistic coil cross-sections
  - Realistic support structures
  - Available materials (properties)
  - Basic assembly feasibility

#### Recent

#### Vacuum Cooling Channel Workshop,

held at LBNL, helped clarify some outstanding interface and space requirements issues







- Magnetics:
  - Use superconductor properties that are commercially available
  - $\rightarrow$  Assume coil J<sub>E</sub> that is demonstrated to be feasible
- Mechanical:
  - Structures use readily available and proven materials
  - Apply realistic boundary conditions (stick-slip, pre-stress)
  - Some space allocated for cryogenics



### First layout: overview



- Consider "tilted" and "straight" solenoids
- Fill factors based on sampling of existing magnets
- Properties from commercially available superconductors

|          | $J_E = k J_S$   | C                |         |
|----------|-----------------|------------------|---------|
| Material | Magnet          | k                | average |
|          | Tevatron MB     | 0.23             |         |
|          | HERA MB         | 0.26             |         |
|          | SSC MB inner    | 0.30             |         |
|          | SSC MB outer    | 0.27             |         |
| Nb-Ti    | RHIC MB         | 0.23             | 0.26    |
|          | LHC MB inner    | 0.29             |         |
|          | LHC MB outer    | 0.24             |         |
|          | FRESCA inner    | 0.29             |         |
|          | FRESCA outer    | 0.26             |         |
|          | CERN-Elin inner | 0.29             |         |
|          | CERN-Elin inner | 0.26             |         |
|          | MSUT inner      | 0.33             |         |
| Nb3Sn    | MSUT outer      | 0.34             | 0.33    |
|          | LBNL D20 inner  | 0.48             |         |
|          | LBNL D20 outer  | . D20 outer 0.34 |         |
|          | FNAL HFDA02-03  | 0.29             |         |
|          | NED             | 0.31             |         |
| Nb3Sn    | HQ quadrupole   | 0.32             | 0.32    |
| Nb3Sn    | HD2             | 0.33             | 0.33    |

**Reference:** L. Rossi and Ezio Todesco, **«Electromagnetic design of superconducting dipoles based on sector coils"**, PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS **10**, 112401 (2007)





# Axial field profile





MAP Spring Meeting, FNAL



### Magnetics: load lines



- Assume OST RRP Nb<sub>3</sub>Sn (Godeke fit; 5% degradation, SF-corrected)
- Assume NbTi with 3kA/mm<sup>2</sup> @ 5T, 4.2K (Bottura fit)





## Magnetics - status



- Middle and outer (NbTi) coils have ample margin
- Inner (Nb<sub>3</sub>Sn) solenoid is marginally feasible
  - ➡ room for further optimization (iteration with beam modeling)
- Both single-wire and Rutherford cable can be considered
  - Magnet protection: inductance considerations (not yet addressed)
    - $\checkmark$  know that solutions exist (prefer passive, but may need active)
  - ➡ dB/dt-induced quenching down the train needs to be evaluated
    - $\checkmark$  mitigate by judicious grouping, possible eddy-current field clamping

|               | % of the load line at operational current |                                |     |  |  |
|---------------|-------------------------------------------|--------------------------------|-----|--|--|
|               | Inner solenoid                            | Middle solenoid Outer solenoid |     |  |  |
| Nb-Ti @ 4.2 K | -                                         | 76%                            | 74% |  |  |
| Nb-Ti @ 1.9 K | -                                         | 59%                            | 58% |  |  |

| Nb3Sn @ 4.2 K | 88% | - | - |
|---------------|-----|---|---|
| Nb3Sn @ 1.9 K | 81% | - | - |







- Significant longitudinal forces between coils
  - ➡ No fault-force analysis so far
- Prefer groupings with zero net longitudinal force
  - ➡ but recognize inter-grouping forces will arise if one quenches



MAP Spring Meeting, FNAL







- Sliding without friction for all coil/structure contact surfaces
- Separation allowed









### Use historical data from various magnet types

| S-Glass<br>Rutherford braid        | From 295 to 77 K |          |          |          |  |  |
|------------------------------------|------------------|----------|----------|----------|--|--|
| Nb <sub>3</sub> Sn cable insulatic |                  | X (m/m)  | Y (m/m)  | Z (m/m)  |  |  |
| lial (V                            | Nb-Ti            | -0.00341 | -0.00437 | -0.00274 |  |  |
| Rac                                | Nb₃Sn            | -0.00305 | -0.00367 | -0.00305 |  |  |
| Magnet axis (x)                    |                  |          |          |          |  |  |

#### References:

- **M. Reytier** et al., "Characterization of the thermo-mechanical behaviour of insulated cable stacks representative of accelerator magnet coils (2001)
- **D. R. Chichili** et al., "Investigation of cable insulation and thermo-mechanical properties of epoxy impregnated Nb<sub>3</sub>Sn composite" (2000).
- Ken P. Chow et al., "Measurements of modulus of elasticity and thermal contraction of epoxy impregnated Niobium-Tin and Niobium-Titanium composites (1999).
- Iain R. Dixon et al., "Mechanical properties of epoxy Impregnated Superconducting solenoids" (1996).

|        | Reference | Year | Insulation                     | Cond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Loading   | Direction X<br>(Gpa) | Direction Y<br>(Gpa) | Direction Z<br>(Gpa) |
|--------|-----------|------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|----------------------|----------------------|
|        | Dixon     | 1996 | DGEBA resin + E-glass cloth    | rect strand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 cycle   | 59.3                 | 41.0                 | 99.5                 |
| NIL T  | Chow      | 1998 | Epoxy + glass cloth            | rect strand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monotonic | 52.9                 | 44.4                 | 56.8                 |
| IND-II | Chow      | 1998 | Mixture law                    | rect strand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 35.3                 | 35.3                 | 106.2                |
|        | Reytier   | 2001 | epoxy + 60μm quartz fiber tape | cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cyclic    | -                    | 46                   | -                    |
|        | Cha       | 1000 |                                | http://www.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com/article.com |           | 24.5                 | 27.0                 | <b>C7 7</b>          |
| Nb₃Sn  | Chow      | 1998 | Epoxy + Sglass braid           | cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monotonic | 34.5                 | 27.6                 | 6/./                 |
|        | Chow      | 1998 | Mixture law                    | cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 34.4                 | 24.6                 | 80.6                 |
|        | Reytier   | 2001 | epoxy + 60μm quartz fiber tape | cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cyclic    | -                    | 45                   | -                    |
|        | Chichili  | 2000 | epoxy CTD-101K + S2 glass      | cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monotonic | -                    | 26                   | 56                   |
|        | Chichili  | 2000 | epoxy CTD-101K + S2 glass      | cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cyclic    | -                    | 40                   | -                    |

| Material                   | Е,    | GPa   | Poisson's Ratio                |
|----------------------------|-------|-------|--------------------------------|
|                            | 300 K | 4.2 K |                                |
| $Nb_3Sn + S-2$             | 39    | 40    | $v_{12} = 0.15; v_{32} = 0.34$ |
| Nb <sub>3</sub> Sn+ceramic | 38    | 38    | $v_{12} = 0.14; v_{32} = 0.33$ |

**Table 4**: Azimuthal modulus and Poisson's ratio of thecomposite after massaging to 100 MPa.

#### D.R. Chichili et al., Investigation of Cable Insulation and Thermo- Mechanical Properties of Nb3Sn Composite.

| TABLE II                                                     |
|--------------------------------------------------------------|
| TENSILE PROPERTIES OF NbTi COIL COMPOSITES AT 77 K AND 4.2 K |

| Specimen | Temp.<br>(K) | Load<br>Direction | Young's<br>Modulus<br>(GPa) | v <sub>12</sub> | $v_{13}$ |
|----------|--------------|-------------------|-----------------------------|-----------------|----------|
| 1        | 77           | 1                 | 96                          | 0.345           | 0.428    |
| 1        | 4.2          | 1                 | 99                          | 0.402           | 0.445    |
| 2        | 77           | 1                 | 94                          | 0.316           | 0.377    |
| 2        | 4.2          | 1                 | 100                         | 0.379           | 0.403    |
| Average  | 77           | 1                 | 95.0                        | 0.331           | 0.403    |
| Average  | 4.2          | 1                 | 99.5                        | 0.391           | 0.424    |

I. Dixon et al. Mechanical properties of epoxy impregnated superconducting solenoids

MAP Spring Meeting, FNAL



## Structural analysis: version I







### Structural analysis: version II



- Version II: pre-stress
- Evaluate states at:
  - ➡ assembly
  - ➡ cooldown
  - Energized







MAP Spring Meeting, FNAL



### Tilting vs dipole superposition

- Tilting:
  - "benign" tilt angle
  - may need additional "knob"
- Dipole superposition:
  - ➡ clean "knob"
  - solenoids keep rotational symmetry
  - need space for dipole
  - dipole sees high field (~IT on I5T background



# BERKELEY LAB

## Summary



- First conceptual design of the vacuum cooling channel magnets
  - Basic feasibility being established (pending optimization)
  - Need to clarify and document requirements for cryogenics and vac. RF
    - ✓ Vacuum Cooling Workshop helped significantly
  - ➡ Room for improvement:
    - ✓ Iterate magnet design and beam modeling to better optimize performance versus magnet complexity/risk
    - ✓ Use magnet modeling tools to iterate/optimize design:
      - materials selection
      - develop pre-stress concept
- No show-stoppers, but...
  - → lots to do: magnet protection, powering, fault scenarios, ...

#### Most importantly, a design process and design tools

are being developed to allow iterative analysis