



# Muon Collider Design

Y. Alexahin (FNAL APC)

MAP 2014 Spring Meeting, Fermilab May 27-31, 2014

- High Luminosity (Higgs Factory  $L \simeq 10^{32} \text{cm}^{-2}\text{s}^{-1}$ , 3TeV MC  $L > 4 \cdot 10^{34} \text{cm}^{-2}\text{s}^{-1}$ )
  - $\Rightarrow$  round beams (to minimize beam-beam effect)
  - $\Rightarrow$  small  $\beta^*$  (Higgs Factory  $\beta^* \sim 2 \div 3$  cm, 3TeV MC  $\beta^* \sim 3 \div 5$  mm)
  - $\Rightarrow$  small circumference
  - $\Rightarrow$  small bunch length  $\sigma_s \leq \beta^*$  (high-energy MC)
    - $\rightarrow$  momentum compaction factor ~ 10<sup>-5</sup>
- Acceptable detector backgrounds
  - $\Rightarrow$  tight apertures in W absorbers (resistive wall instability?)
  - $\Rightarrow$  dipole component in FF quads
  - $\Rightarrow$  halo extraction (bent crystals?)
- Manageable heat loads in magnets
  - $\Rightarrow$  enough space for W absorbers, shorter distance between masks
- $\beta^*$  variation in wide range (w/o breaking dispersion closure)
- Small collision energy spread  $\sigma_E/E \le 4.10^{-5}$  (for Higgs Factory)
  - $\Rightarrow$  instabilities? longitudinal beam-beam effect?
- Safe levels of v-induced radiation (for  $E \ge 3$  TeV)
  - $\Rightarrow$  no long straights (except for IRs)
  - $\Rightarrow$  combined-function magnets to spread v's

## New concepts were developed in the course of muon collider design:

| Section                    | Description                                                                                                                                                                                      | Report                              |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Interaction<br>Region (IR) | Quadruplet Final Focus (see support slide for explanation, implemented only in the Higgs Factory lattice thus far)                                                                               | IPAC13 TUPFI061,<br>NAPAC13 THPBA19 |
| Chromatic correction       | 3 sextupole scheme with 1 <sup>st</sup> sextupole correcting vertical chromaticity while 2 <sup>nd</sup> and 3 <sup>rd</sup> sextupoles form - <i>I</i> separated pair for horizontal correction | PRSTAB 14, 061001<br>(2011)         |
| IR-to-Arc<br>Matching      | $\beta^*$ -tuning section with a chicane* allowing for $\beta^*$ variation in a wide range and having bending field everywhere to spread $\nu$ 's                                                | IPAC12 TUPPC041                     |
| Arc                        | Flexible Momentum Compaction arccell* allowing for independent control of tunes, chromaticities, momentum compaction factor and its derivative with momentum                                     | PRSTAB 14, 061001<br>(2011)         |

\*) for High-Energy MC



- Dipole component in a defocusing quad is more efficient for cleaning purposes
   it is beneficial to have the 2<sup>nd</sup> from IP quad defocusing
- The last quad of the FF "telescope" also must be defocusing to limit the dispersion "invariant" generated by the subsequent dipole (not shown)

$$J_{x} = \frac{D_{x}^{2} + (\beta_{x}D_{x}' + \alpha_{x}D_{x})^{2}}{\beta_{x}} \approx \beta_{x}\phi^{2}$$

- both requirement are met with either doublet or quadrupole FF:



MAP14, Fermilab 05/29/2014

## **Higgs Factory Lattice**



Higgs Factory Interaction Region (IR) and Chromaticity Correction Section (CCS),  $\beta$ \*=2.5cm



IR quad cold mass inner radii and  $4\sigma$  beam envelopes for  $\beta^{*}\text{=}2.5\text{cm}$ 

Specifics of the Higgs Factory lattice are discussed in a support slide



The dynamic aperture at IP and projection of FF quad aperture (solid ellipse).

#### **Higgs Factory Layout**



Dispersion suppressor and  $\beta^*$  tuning section noticeably increase the ring circumference, but they are probably indispensable

## **Modified Higgs Factory Lattice**



### **Higgs Factory Parameters**

| Parameter                                                | Startup | Design | Baseline |
|----------------------------------------------------------|---------|--------|----------|
| Beam energy, GeV                                         | 63      | 63     | 63       |
| Average luminosity, 10 <sup>31</sup> /cm <sup>2</sup> /s | 1.7     | 2.5    | 8.0      |
| Collision energy spread, MeV                             | 3       | 3      | 4        |
| Circumference, m                                         | 300     | 300    | 300      |
| Number of IPs                                            | 1       | 1      | 1        |
| β*, cm                                                   | 3.3     | 2.5    | 1.7      |
| Number of muons / bunch, 10 <sup>12</sup>                | 2       | 2      | 4        |
| Number of bunches / beam                                 | 1       | 1      | 1        |
| Beam energy spread, %                                    | 0.003   | 0.003  | 0.004    |
| Normalized emittance, $\pi$ ·mm·rad                      | 0.4     | 0.3    | 0.2      |
| Longitudinal emittance, $\pi$ ·mm                        | 1.0     | 1.0    | 1.5      |
| R.m.s. bunch length, cm                                  | 5.6     | 5.6    | 6.3      |
| R.m.s. beam size at IP, mm                               | 0.15    | 0.11   | 0.075    |
| Beam-beam parameter                                      | 0.005   | 0.007  | 0.02     |
| Momentum compaction factor                               | 0.079   | 0.079  | 0.079    |
| Repetition rate (Hz)                                     | 30      | 30     | 15       |
| Proton driver power (MW)                                 | 4       | 4      | 4        |

> 13k h-bosons/year at this luminosity



Optics and chromatic functions in IR, horizontal Chromatic Correction Section (CCS), Matching Section and the first arc cell (out of 6 per arc)

MAP14, Fermilab 05/29/2014

#### **Matching Section with Chicane**





• The required B-field in chicane is quite low – magnets can be shorter to free space for RF cavities or pulsed halo deflectors.

• Chicane length is 84.5m, depth at  $\beta^*=3$ cm is 19.6cm – small effect on the total circumference

This concept will be used in the new design but with combined-function magnets.



Momentum compaction factor for a stand-alone cell is

 $\alpha_p$  = -0.004,

betatron phase advance is 300° in both planes.

Each arc consists of six such cells and two dispersion suppressors

| name | L (m) | В (Т) | G (T/m) |  |  |  |
|------|-------|-------|---------|--|--|--|
| QD   | 5     | 9     | -35     |  |  |  |
| QF   | 4     | 8     | 85      |  |  |  |

## 3 TeV MC Design with Quadruplet FF



Muon Collider Design – Y.Alexahin,

MAP14, Fermilab 05/29/2014

#### **3TeV MC Dynamic Aperture**



1024 turns on-momentum dynamic aperture at  $\beta^*$  =5 mm for two versions of 3TeV MC lattice

The momentum acceptance for  $\beta^*$  = 5 mm is ±0.45% and ±0.4% for  $\beta^*$  = 3 mm

| High Energy MC parameters                                     |      |      |      |  |  |  |  |
|---------------------------------------------------------------|------|------|------|--|--|--|--|
| Collision energy, TeV                                         | 1.5  | 3.0  | 6.0* |  |  |  |  |
| Repetition rate, Hz                                           | 15   | 12   | 6    |  |  |  |  |
| Average luminosity / IP, 10 <sup>34</sup> /cm <sup>2</sup> /s | 1.25 | 4.4  | 12   |  |  |  |  |
| Number of IPs                                                 | 2    | 2    | 2    |  |  |  |  |
| Circumference, km                                             | 2.5  | 4.5  | 6    |  |  |  |  |
| β*, cm                                                        | 1    | 0.5  | 0.25 |  |  |  |  |
| Momentum compaction factor, 10 <sup>-5</sup>                  | -1.3 | -1   | -0.5 |  |  |  |  |
| Normalized emittance, $\pi$ ·mm·mrad                          | 25   | 25   | 25   |  |  |  |  |
| Momentum spread, %                                            | 0.1  | 0.1  | 0.1  |  |  |  |  |
| Bunch length, cm                                              | 1    | 0.5  | 0.25 |  |  |  |  |
| Number of muons / bunch, 10 <sup>12</sup>                     | 2    | 2    | 2    |  |  |  |  |
| Number of bunches / beam                                      | 1    | 1    | 1    |  |  |  |  |
| Beam-beam parameter / IP                                      | 0.09 | 0.09 | 0.09 |  |  |  |  |
| RF voltage at 1.3 GHz, MV                                     | 12   | 150  | 600  |  |  |  |  |
| Proton driver power (MW)                                      | 4    | 4    | 2    |  |  |  |  |

\*) based on extrapolation, not a real design yet

## Lattice Design Plans(from 2014 DOE review)

|                                                                                                                                                                                                   | person-months |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 3 TeV MC lattice with quadruplet FF                                                                                                                                                               | 6             |
| <ul> <li>Halo extraction scheme for high energy MC<br/>electrostatic separator – too long (~25m for 3TeV)<br/>RF or pulsed septum ?<br/>bent crystals ? – First look quite encouraging</li> </ul> | 3             |
| <ul> <li>Tolerances on field errors and misalignments</li> </ul>                                                                                                                                  | 3             |
| <ul> <li>Longitudinal dynamics in HF with wakes and beam-beam</li> </ul>                                                                                                                          | 6             |
| Update of the HF lattice                                                                                                                                                                          | 3             |
| 6 TeV lattice design                                                                                                                                                                              | 6             |
| <ul> <li>1.5 TeV MC lattice with quadruplet FF (?)</li> </ul>                                                                                                                                     | 3             |
| Total (rough estimate)                                                                                                                                                                            | 30*           |

• Finish of the 3TeV MC lattice with quadruplet FF (will be done no matter what by end of July)

- Study tolerances on field errors and misalignments very important for understanding the real constrains on beta-functions, momentum compaction factor etc. (will be done only if sanctioned)
- First look at 6TeV lattice (?)

Other items can be put on a slow burner

| Collider Ring |                   | Concept<br>Specification | Lattice Files &<br>Performace<br>Eval | Lattice Sign- | Interface<br>Params | Technology<br>Specification | Technology<br>Sign-Off | IBS Review<br>Ready Date | IBS Initial<br>Review<br>(where<br>needed) | IBS Review | IB<br>Specifications<br>(Dependent on<br>results from<br>previous<br>system) |
|---------------|-------------------|--------------------------|---------------------------------------|---------------|---------------------|-----------------------------|------------------------|--------------------------|--------------------------------------------|------------|------------------------------------------------------------------------------|
| Higgs Factor  | 'Y                | 10/1/2013                | 3/30/2014                             | 4/29/2014     | 5/29/2014           | 9/26/2014                   | 10/26/2014             | 1/27/2015                | 2/26/2015                                  |            |                                                                              |
| 1.5 TeV (2 &  | 4 MW Source)      | 10/1/2013                | 3/30/2014                             | 4/29/2014     | 5/29/2014           | 9/26/2014                   | 10/26/2014             | 1/27/2015                | 2/20/2015                                  | 1/27/2016  | 9/20/2016                                                                    |
| 3 TeV (2 & 4  | MW Source)        | 10/1/2013                | 7/28/2014                             | 8/27/2014     | 9/26/2014           | 1/24/2015                   | 2/23/2015              | 5/27/2015                |                                            | 1/2//2010  | 0/29/2010                                                                    |
| >5 TeV (<2 M  | MW Source)        | 10/1/2014                | 2/28/2015                             | 3/30/2015     | 4/29/2015           | 8/27/2015                   | 9/26/2015              | 12/28/2015               |                                            |            |                                                                              |
| Ring-MDI Int  | erface Parameters | 10/1/2014                |                                       |               | 4/29/2015           |                             |                        |                          |                                            |            | 8/29/2016                                                                    |

Muon Collider Design – Y.Alexahin,

#### MAP14, Fermilab 05/29/2014

- Large  $\epsilon_{\perp N} \rightarrow$  small  $\beta^*$  to achieve the required luminosity  $\rightarrow$  very large IR magnet apertures (up to ID~50cm).
- Preservation of small  $\sigma_{E} / E \sim 3.10^{-5}$  in the presence of strong self-fields (Ipeak ~ 1kA !)  $\rightarrow$  LARGE momentum compaction  $\alpha_{c} \sim 0.1$

• Chromaticity correction is still necessary due to path lengthening effect and operational considerations.

Path length dependence on betatron amplitude (L. Emery, HEACC'92, Hamburg) translates into additional energy spread\*:

$$\frac{\Delta E}{E} \approx \frac{1}{\alpha_c R} (Q'_x I_x + Q'_y I_y) \rightarrow \left\langle \frac{\Delta E}{E} \right\rangle = \frac{2 |Q'_\perp| \varepsilon_\perp}{\alpha_c R}, \quad \varepsilon_x = \left\langle I_x \right\rangle$$
$$A_x / \sigma = \sqrt{2I_x / \varepsilon_x}$$

With uncorrected  $\text{Q'}_{\perp}\text{~-100}$  and  $\alpha_{c}\text{=}0.05$  we would have

$$\left\langle \frac{\Delta E}{E} \right\rangle \sim 6 \cdot 10^{-5}$$

Collision with a thin slice of Ns particles leads to energy change

$$\Delta E = \frac{e^2 N_s}{2\beta_{\perp}} \frac{d\beta_{\perp}}{ds} \bigg|_{\text{collision point}}, \quad \Delta E_{\text{max}} = \frac{e^2 N_s}{2\beta^*} \sim 58 \text{kV for } N_s = 2 \cdot 10^{12} \text{ and } \beta^* = 2.5 \text{cm}$$

For  $\alpha_c > 0$  the effect is defocusing (good), but it is strongly nonlinear (not so good). The finite bunch length reduces it somewhat:



Effective gradient is ~0.7 MV/m for cited parameters, can exceed 2 MV/m for the upgrade. Higher-frequency (500MHz) RF for compensation?