

Organization

II Online Systems Summary

- A MLCR and Rack Rooms
- **B** Infrastructure
- C DAQ and Trigger

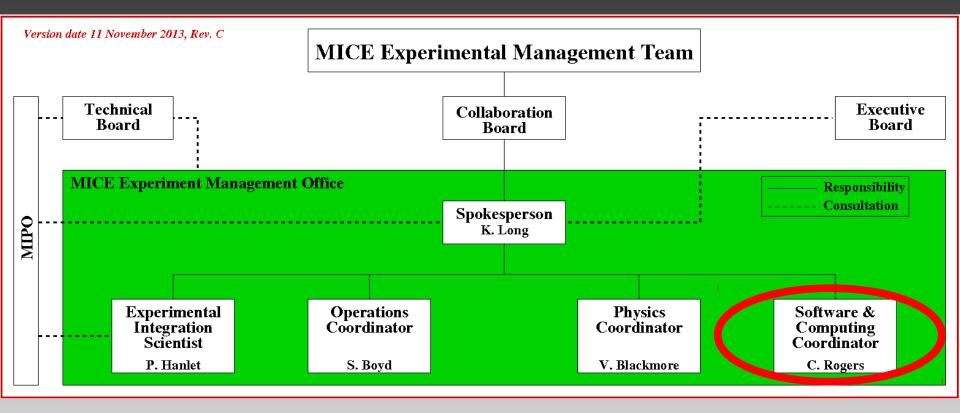
III Controls and Monitoring (C&M)

- A Description
- **B** Integrated Hardware Plan
- C Higher Level Operations
- D Other Items

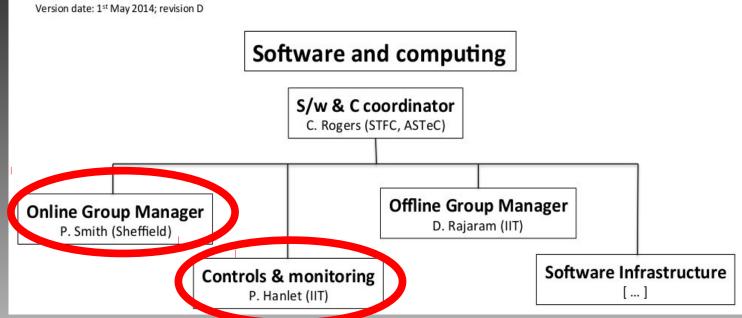
I Organization

II Online Systems Summary

- A MLCR and Rack Rooms
- **B** Infrastructure
- C DAQ and Trigger


III Controls and Monitoring (C&M)

- A Description
- **B** Integrated Hardware Plan
- C Higher Level Operations
- D Other Items


30 May 2014



- Since last MAP, C&M is its own work package.
- Online is under new leadership.
- Computing infrastructure continues to be handled by Online

30 May 2014

I Organization

II Online Systems Summary

- A MLCR and Rack Rooms
- **B** Infrastructure
- C DAQ and Trigger

III Controls and Monitoring

- A Description
- **B** Integrated Hardware Plan
- C Higher Level Operations
- D Other Items

• Online systems serve to provide platforms for Operations team to interface w/HW

• Responsible for HW in MICE Local Control Room (MLCR)

• Responsible for HW in Rack Rooms (RR1 & RR2)

- Local Network Switch
- Servers and Operator Interface computers for:
 - Online Monitoring
 - Online Reconstruction
 - C&M
- DAQ
- Trigger

Responsibility: RR1

• Infrastructure:

- Network Switch stack (3+1)
- UPS (6)
- KVM (2)
- miceserv1 and micestore (1 each)
- Online

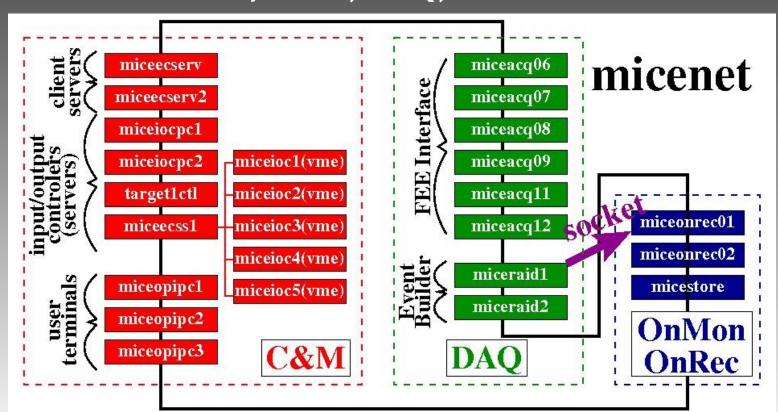
Monitoring/Reconstruction:

- miceonrec (3)
- Machine Type (required + backup)
- 6 spare servers will soon become available when miceacq machines are replaced
- RR2 Hardware list pending
- Upgrading C&M pcs to SL6.4 30 May 2014

• C&M Servers:

- miceecserv (1+1)
- miceiocpc (1+1)
- miceopipc (2+1)
- target1ctl (1)
- cagateway (1)
- miceisisgateway (1)
- micecss (1+1)

• DAQ


- Detector readout boards
- trigger hardware
- miceacq (6)
- miceraid (2)

Infrastructure: Network

MICE runs a secure virtual LAN, managed by RAL Networking, of 254 IP addresses Forms backbone of C&M, DAQ, and Online Mon/Rec

• DAQ is complete and stable

- All PID systems now being read out by DAQ
- Await full tracker integration (earlier test successful)
- No rate limitation observed for MICE expected rates

• New FPGA Trigger

- Developed by Geneva
- Replaces NIM/CAMAC based system
- Installed this Spring and tested with pulser
- Awaiting beam running for full commissioning

I Organization

II Online Systems Summary

- A MLCR and Rack Rooms
- **B** Infrastructure
- C DAQ and Trigger

III Controls and Monitoring

- A Description
- **B** Integrated Hardware Plan
- C Higher Level Operations
- D Other Items

The Task "the obvious"

- **Controls and Monitoring (C&M):**
- provide hardware controls
- provide user interfaces
 - synoptic displays GUIs
- protect equipment
 - alarm handling
 - data archiving
- contribute to protect data quality
 - alarm handling
 - data archiving

Not responsible for personnel protection

The Procedure

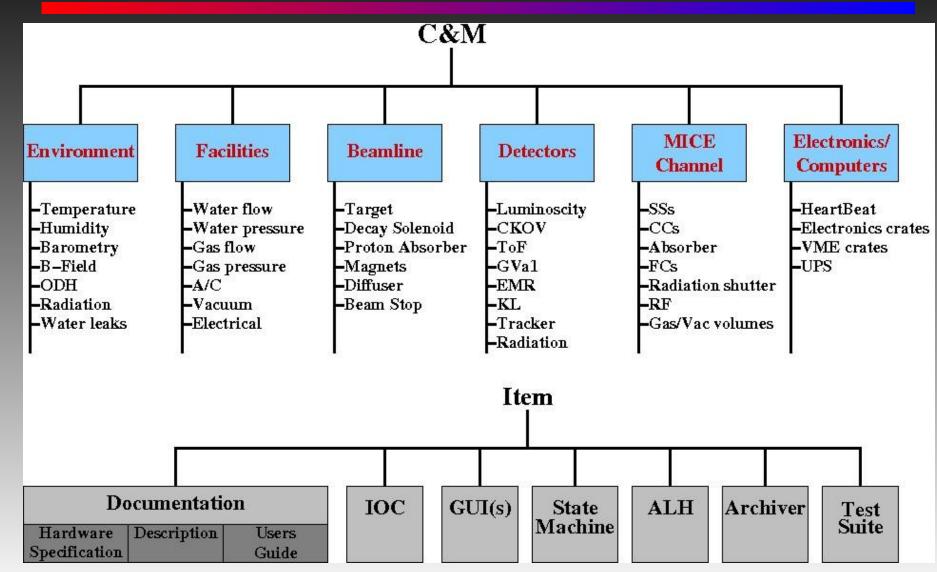
•Subsystems controls built/commissioned independently

- -specified by subsystem owners
- -interlocks built in at component level
- -standalone C&M tested with subsystems

•New integrated C&M hardware

–re-arrange racks to share space/resources

-install in RR2 - allows access while running


•Higher level controls interface with subsystems

- Document in progress
- MICE-NOTE-GEN-431

Organization

30 May 2014

Pierrick M. Hanlet

14 of 37

Organization

Understanding the Scope

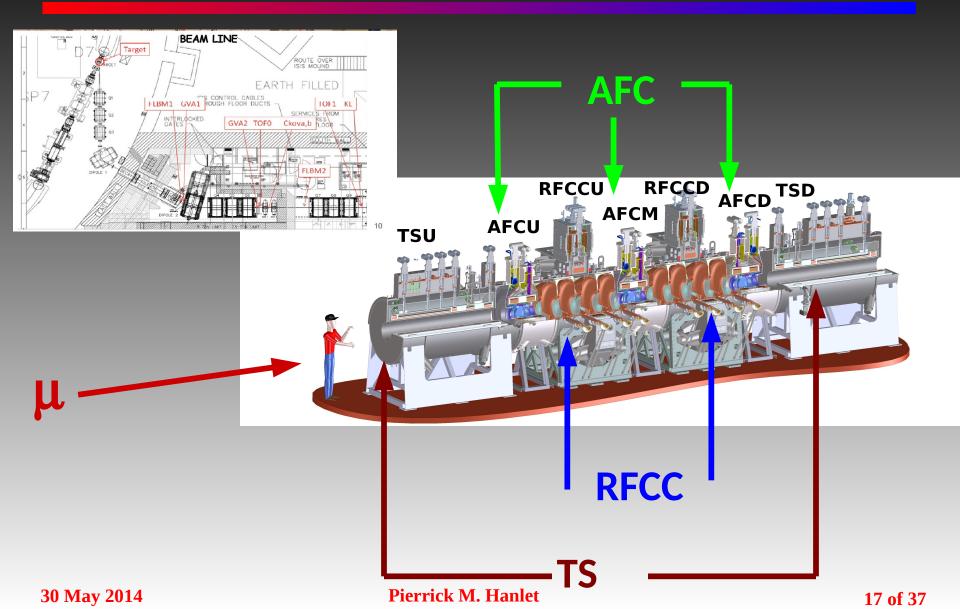
			Owner	Required Time (Hours)	Proportion Done (%)	Person Occupancy	Modifier	Estimated Task Time (Days)	Actual Time Taken
		IOC	Hanlet	3	95	60.00%	1	0.03	
invironment	Temperature Humidity Barometry WaterLeaks	GUI(s)	Hanlet	1	95	60.00%	1	0.01	
		ALH	Heidt	1	80	5.00%	1	0.50	
		Archiver	Heidt	1	80	5.00%	1	0.50	
		StateMachine	NA	0	0	0.00%	1	0.00	
		TestSuite	NA	0	0	0.00%	1	0.00	
		Documentation	Taylor	0	0	50.00%	1	0.00	
	B-Field	IOC	Hanlet	24	0	60.00%	1	5.00	
		GUI(s)	Hanlet	2	0	60.00%	1	0.42	
		ALH	Heidt	1	0	5.00%	1	2.50	
		Archiver	Heidt	1	0	5.00%	1	2.50	
		StateMachine	NA	0	0	0.00%	1	0.00	
		TestSuite	NA	0	0	0.00%	1	0.00	
		Documentation	Uchida	0	0	5.00%	1	0.00	
	одн	IOC	Hanlet	12	0	60.00%	1	2.50	
		GUI(s)	Hanlet	1	0	60.00%	1	0.21	
		ALH	Heidt	1	0	5.00%	1	2.50	
		Archiver	Heidt	1	0	5.00%	1	2.50	
		StateMachine	NA	0	0	0.00%	1	0.00	
		TestSuite	NA	0	0	0.00%	1	0.00	
		Documentation	Nebrensky	0	0	50.00%	1	0.00	
	Radiation	IOC	Hanlet	24	0	60.00%	1	5.00	
		GUI(s)	Hanlet	1	0	60.00%	1	0.21	
		ALH	Heidt	1	0	5.00%	1	2.50	
		Archiver	Heidt	1	0	5.00%	1	2.50	
		StateMachine	NA	0	0	0.00%	1	0.00	
		TestSuite	NA	0	0	0.00%	1	0.00	
		Documentation	Torun	0	0	1.00%	1	0.00	
201/	4		Dia	prick M	Hanlat				

Partial list example

30 May 2014

•Large systems provided by controls team from Daresbury Lab (DL):

- SS/FC/DS/conventional magnets
- LH₂ system
- Integrated cooling channel controls
- FC/DS quench protection
- Target/Tracker infrastructure
- Vacuum
- •Target/Tracker: Leaver/Robinson/Adey
- •Coordination/integration: Hanlet


•Smaller systems: Hanlet/Taylor/Heidt

30 May 2014

Controls & Monitoring

•Beamline

- conventional magnets
- proton absorber
- beam stop
- diffuser

•Particle ID (PID)

- GVa1
- ToF 1/2/3
- CKOV A/B
- KL
- EMR

•Environment

temp./humidity..
Facilities/Computing

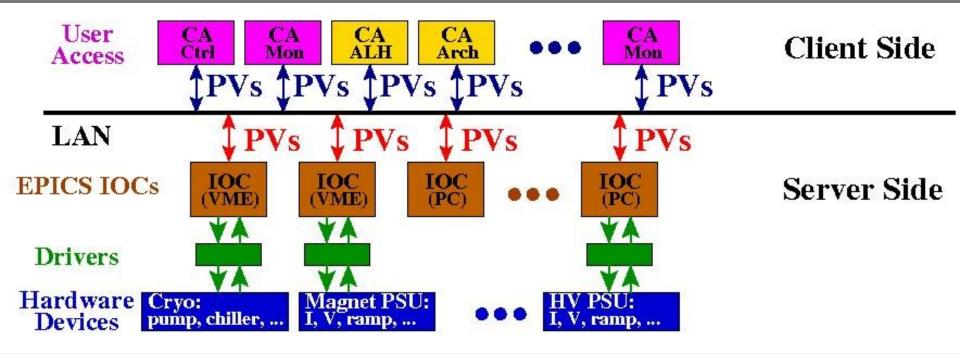
30 May 2014

Target SC Solenoids spectrometer solenoids focus coil(s) coupling coils (Step V or VI) decay solenoid Trackers

•Absorbers

- LH₂
- solid absorbers
- •**RF** (Steps V&VI)

These systems require:


- vacuum
- cryogenics
- power supplies

Framework: EPICS

Experimental Physics & Industrial Control Systems
HW+Drivers connect to IOCs (Input/Output Controllers)
IOCs create PVs (process variables) to represent params
PVs are further described with native fields
PVs available on LAN to other IOCs or clients

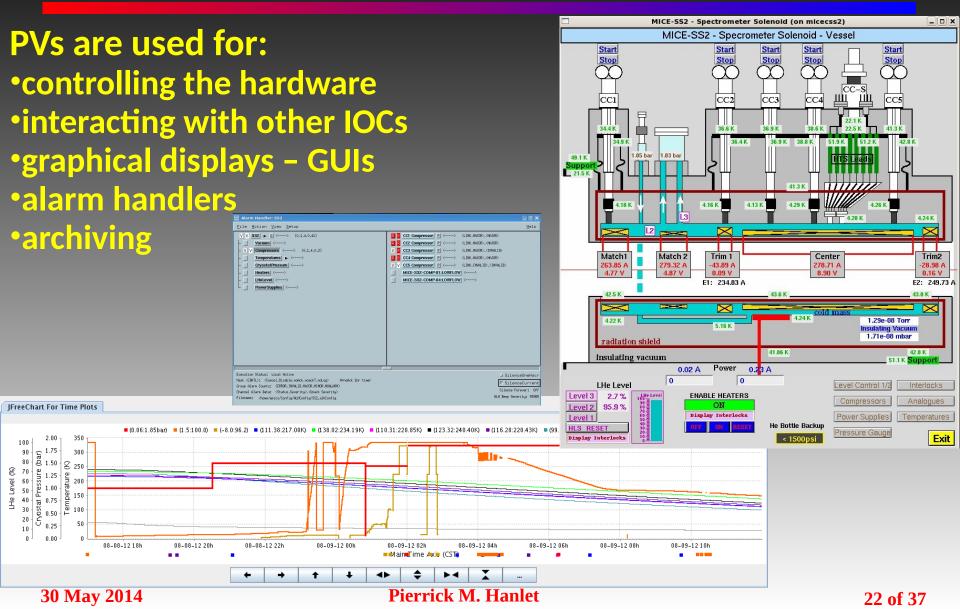
30 May 2014

Hardware Description

DL Platform

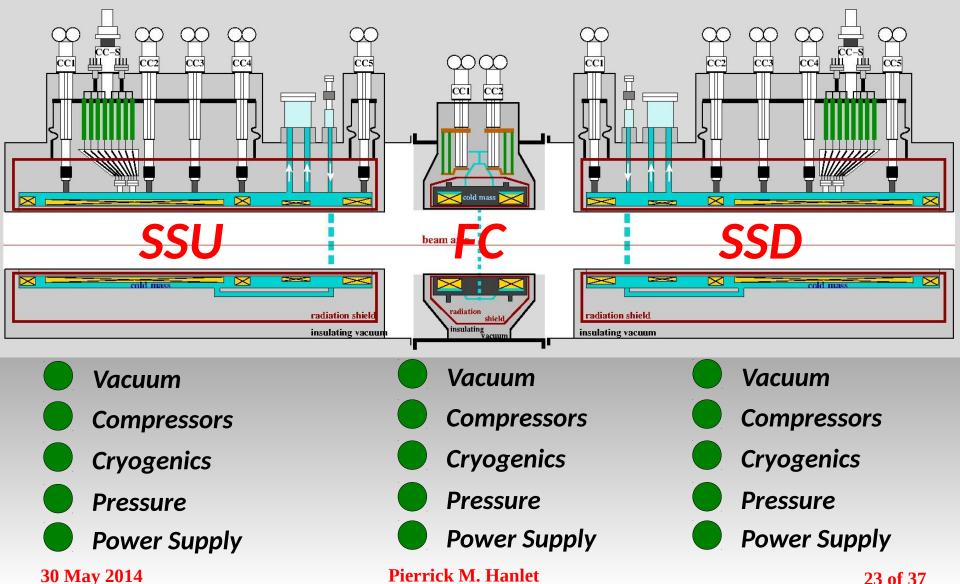
- •IOCs are VME based system with Hytek processors running VxWorks.
- •Sensor controllers interfaced via RS232.
- •CANbus employed for interlocks/digital controls
- •Analog devices monitored/controlled with VME based ADCs and DACs.
- •LH₂ system controlled by Omron PLCs
 - EPICS used solely for remote monitoring

•Other IOCs implemented on Linux PCs

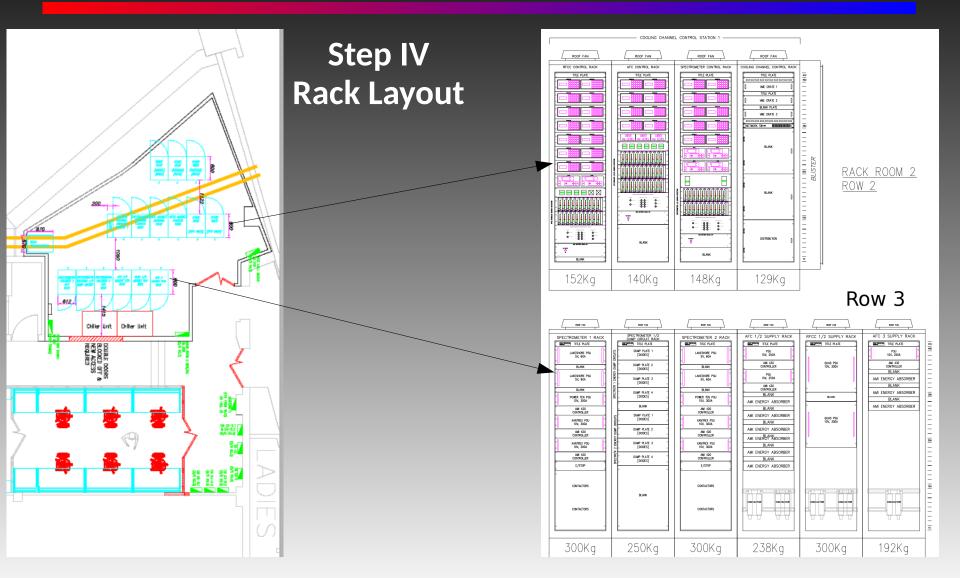

• Ckov, radiation monitoring, high voltage for the PID detectors, proton absorber, beamstop, RF tuners, environment monitoring, air conditioning, LH₂ monitoring, and computer/electronics ``heart beat'' monitoring

•Employ a variety of interfaces •serial RS232 and RS485, SNMP, and TCP/IP.

Framework: EPICS



Step IV Interface



23 of 37

Hardware Plan

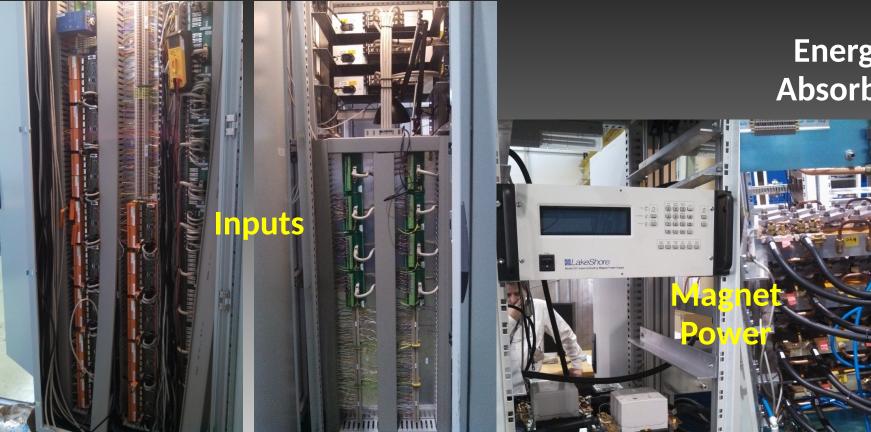
30 May 2014

Pierrick M. Hanlet

24 of 37

Hardware Progress

DL C&M racks for Rack Room 2


Awaiting controllers to populate racks

Hardware Progress

Canbus/ **Controllers**

Analog **Sensors**

Energy Absorber

30 May 2014

With installation/commissioning of the new controls HW (DL), the subsystems must be able to operate together, share resources, and not adversely affect each other. These are handled by:

- State Machines for each major subsystem
- Mother State Machine
- Run Control

Documented in MICE Note 431

EPICS state notation language employed:

- define equipment operational statesfor each state:
 - define transitions out of state
 - set alarm limits
 - set archiving features
 - define critical variables
- •check for software interlocks; e.g. quench
- check for errors
- check for transition

All parameters come from configuration database (CDB) – ensures correct settings

30 May 2014

State Machine Requirements

Subsystem Owners must enumerate the states and provide for each state:

1)Description of state
 2)Transition into state
 3)PVs of interest
 4)Alarm limits for PVs
 5)Archiving features for PVs
 6)AutoSMS (auto dialer) flag
 7)Hardware interlocks
 8)Software "interlocks" (enables)

•Required for each state •Stored in the CDB

30 May 2014

State Machine: SS Example

- Spectrometer Solenoid Magnets: 1)Offline 2)Pumping: establish insulating vacuum 3)Pumped_Warm: insulating vacuum established 4)Pre_Cooling: N₂ pre-cooling (T>100K)
- 5)Cooling: cryo-coolers lower shield/cold mass T
- 6)LHe_Filling: add liquid He
- 7)Cold_Ready: cold and stable
- 8)Ramping: applying current
- 9)Powered: stable operation
- **10)Quenched: quench detected**
- **11)Error: error requires operator intervention**
- 12) Testing: interlocks disabled for manual testing

Successfully used in training/mapping SS magnets

30 May 2014

SS1 Example

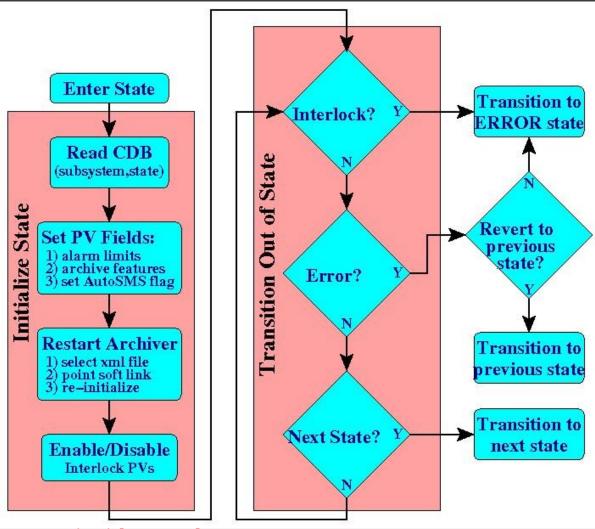
For eac owr pro

	PV Name	Description		oured	ALARM			Laite		ARCHIVER		Aven 5 Miles	Transition		
			Low	High	Lote					Frode	Inequency (a)	deadband	distant Parts	description	
	MICHAEL AND ALL PROPERTY	instanting viscours			105-10	05-09	3.06-00	205-02	DOLL	TRACTOR	399	1.05-08	TRUE	14.28	4.05+93
For	MICE-SS1-SD-61(RDGK	lfee of HTS lead EL side			0.6	4.0	10000	125.0		8530	300		RAISE	8,8,	0.0
	MICE-EST-SD-80TRDSK	and Shield near vertical capper plates			0.0	10	213.0	218.0	- R	1000	388		FRUSE	33	0.0
_	MICE-SS1-SE-60 RESK	CCS Cu Plate			0.0	4.0	187.0	192.0	ĸ	8030	300		FALSE	14,54	0.0
oach state	MICE-SS1-SE-DERDSK	Red Shield near MC and upper support			0.0	4.0	225.0	220.0	ĸ	8036	300		FALSE	14,56	0.0
each state,	MICE-SS1-SD-65TRDSK	CC2 Cu Plate			0.6	- 6.0	217.8	222.0	K	10000	366		Fatters	N.S.	0.0
· · · · · · · · · · · · · · · · · · ·	MICE-SS1-SD-06(RDGK	kad Shieki			0.9	4.0	221.8	226.0	К	ADAN	385		FRISE	14,98	0.0
	MICE-551-SD-30(RDGK	CC1 Stage 1			0.0	0.0 0.0	194.0	189.0	K	8030	300		FRI SE	3,9.	0.0
owner	MICE-551-SD-11(RDSK MICE-551-SD-13(RDSK	SC2 Stage 1 SC3 Stage 1			0.8	-0.0	280.8	217.0	K K	8030	388		FALSE FALSE	N/8. 109.	00
	MICE-SS1-SD-13 RDGK	CC4 Stage 1			0.5	10	218.3	222.0	- K	ALC: N	333		FRISE	13	0.0
provides	MICE-SS1-SD-34 RDSK	Cold Head single stage strap			0.0	4.0	694.0	24.0	K	8000	399		FR456	3.5	0.0
nrovides	MICE-551-SE-15:RDGK	CC5 Stage 1			0.0	4.0	237.0	242.0	K	8030	300		FRUSE	8.9.	0.0
provides	MICE-SS1-SD-36 RDSK	CC1 Cu Plate			0.0	-0.0	235.0	240.0	ĸ	80301	388		FRESS	N/N	0.0
	MICE-SS1-SB-15(RDSK	kad Shield			0.6	4.0	2.28.6	222.0	K	30365	388		FRUSS	3,3.	0.0
	MICE-SS1-SD-201RDSK	CM Support SC and lower support			0.6	4.0	236.0	241.0	ĸ	8030	399		F-R41565	14,54	0.0
	MICE-SS1-SD-331RDGK MICE-SS1-SD-341RDGK	As Stretching coll and upper support.			0.0	4.0 3.0	242.0	247.0	K	A030	399		FRESE	14.18. 16.18.	0.0
	MICE-551-SD-25:RDGK	Centre of of Radiation bore at bottom			0.6	4.0	233.0	228.0	E E	ACM 1	399		FRISE	33	0.0
	MICE-551-50-36(RDGK	Bottom of outer cylinder of Raditation shield			0.6	4.0	225.5	220.0	R R	30367	300		FALSE	3.5	0.0
	MICE-SS1-SB-371RBGK	on the single stage cooler head surface			0.0	-10	81.0	16.0	Ř	10.00	385		FRISE	<u>i</u> ii	- 000
	MERCHARGERENTED	Cold Mass bottom by M3			0.5	5.0	1000	1100	ĸ	8000	333		FRISE	1,9.	0.0
	MICE-SS1-CX-001RDISK	Cold Mass top by E2			0.0	4.0	105.0	110.0	к	8030	300		FALSE	14,54.	0.0
	MICE-SSI-CR-DITEDLE	CCII Cu Plate			0.0	4.0	219.0	222.0	K	8030	399		F#456	14/8	0.0
	MICE-SS1-CX-DERDGK	CC4 Cu Plate			0.8	4.0	233.3	208.0	K	8000	366		FRISE	3(3)	0.0
	MICE-551-CR-051RDGR	CC1 Stage 2			0.6	0.0	1,79.0	194.0	K	ADAG	300		FRI SE	34,58.	0.0
	MICE-551-CR-06(RDSK MICE-551-CR-07(RDSK	CC2 Stage 2			0.6	4.0 4.0	287.8	212.0	K K	ADAM	300		FALSE FALSE	83. 83.	0.0
	MICE-551-CX-001RDGE	CC4 Stage 2			0.0		227.8	2000	K K	8030	385		FRIDE	33	0.0
	MICE-SS1-CR-DHRDGK	CCS Stage 2			0.0	4.0	242.0	247.0	K	5520	399		FR456	3.5	0.0
	MICE-551-CX-30(RDGK	Cold Mass bottom of LTS leads			0.0	4.0	200.0	205.0	K	8030	300		FRUSE	8.9.	0.0
	MICE-SS1-CS-111 RDSK	Litio fill line heater			0.6	4.0	100.0	105.0	ĸ	8036	366		FALSE	8,9.	0.0
	MICE-SS1-CX-13TREGK	Cold Mass bottom heater			0.8	4.0	130.8	105.0	K	30365	388		FALSE	3,3.	0.0
	MICE-551-CR-111RDGR	Fop of HTS lead 62 side			0.6	4.0	1,29.6	1.341.0	E I	8030	300		F8156	34,58	0.0
	MICE-SS1-CC-01ISES			_		0.0	0.0			1 Inconstru	62.0	8.0		3.3	<u> </u>
	MICE-551-CC-02151A	Cryp Compressor 1: status Cryp Compressor 2: status			0.0	10	0.0	0.0		renter r	62.0	0.0	TRUE	NS.	0.0
	MICE-SS1-CC-031STA	Cryp Comprover 31 status			0.0	4.0	6.6	0.0	-	100000	68.0	0.0	TRUE	14.56	0.0
	MICE-SS1-CC-041STA	Cryp Compressor 4: status			0.6	4.0	6.6	0.0	-	TEACHER	68.0	0.0	TRUE	14,50.	0.0
	MICE-551-CC-05151A	Cryp Compromer Statut			0.0	4.0	0.5	0.5	-	merita r	62.0	0.5	TRUE	N/N.	0.0
	MICE-SS1-CC-0318LM	Crys Compressor 1: OR of alarm states			0.0	-0.0	0.5	0.0		nonitar	62.0	0.8	TRUE	14,98	0.0
	MICE-SS1-CC-021ALM	Cryp Comprosper 2: OR of alarm states			0.0	4.0	0.0	0.0	-	inenitar	68.0	0.0	TRUE	24,25	0.0
	MICE-SS1-CC-031ALM	Cryp Compressor 31 OR of alarm states			0.0	4.0	0.0	0.0		Tenitat	68.0	0.0	TRUS	1,11	0.0
Load these	MICE-551-CC-061ALM MICE-551-CC-051ALM	Cryo Compressor 41 OK of slarm states Cryo Compressor 31 OK of slarm states			0.2	8.0 8.0	0.0	0.0		rentar rentar	62.0	0.0	TRUS	3,9.	00
	MICE-SSI-CO-0518LM	crye compresser at OK of alarm states			0.0	0.0	0.0	0.0			02.00	93.9	I P.L.Dr	8,25	
_		cent line pressure from 600			1.05	1.1.0	1.530	2.00	BUR I	1 TESCHEL		6.02		1.2	0.0
to	MICE-SS1-PG-01 ALM	sum of alarm states			0.0	4.0	8.5	0.0		nerite (1.0	0.00	FRISE	NN.	0.0
ιO	MICE-551-PG-01/ERK	communication error codes								nonitar	1.0	0.00	FR156	14,98	0.0
	MICE-661-PG-021RP	Ill line pressure from AbC			1.05	1.1.8	1.90	3.00	13.5F	nonitar	1.0	6.02	FRUSE	1,5.	0.0
	MICE-SSI-PG-63 ALM	curved Marine et allest			0.0	6.0	10.0	0.0		Transfer III	1.8	8.00	FRIZE	1.2	00
CDB	MICE-SS1-PS-82/ERR	coremunication error codes								nonita (1.6	5.00	FRISE	N.N.	0.0
	Second of the second second			_			_			Sec. 1					-
	MICE-SSI-HER-DIISES MICE-SSI-HER-DIISES	Cold mass heater			0.0	3.0	10.0	1.0			1.0	0.0	1 P.L.P.		0.0
	MICE-SSI-LEVEL-GUILLEV	Late level			0.0	- 2.0	1000	1000	1	8000	5.0	0.0	FRI26	Lawyord Street	25.5
	MICE-SSI-HLS-001Sta	Lite level switch			-1.0	4.0	2.4	2.0		nonitar	10.0	0.0	E8155	14,78.	0.0
	MICE-SSI-LEVEL-OTIBLEV	Lite level overflow			0.0	2.0	10.0	23.0	24	10000	10.0	0.0	FALSE	14,56	0.0
				1											

30 May 2014

Pierrick M. Hanlet

31 of 37



State Machine Algorithm

For each subsystem & state, the algorithm:

Transitions: •manual •automatic

Note: states can be static or dynamic

State Machine Status

Existing (at least started):

- Spectrometer Solenoids
- Focus Coil
- Decay Solenoid

Required (not started):

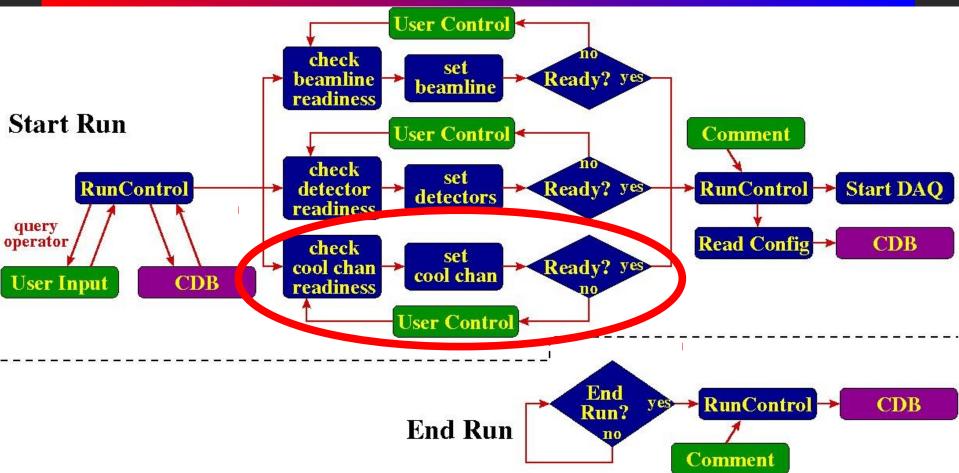
- Absorber
- Conventional magnets
- Target
- Trackers

30 May 2014

Run Control

Checks readiness of all required subsystems •Serves to control

- Beamline magnets
- Particle ID detectors
- Trackers
- Absorber(s)
- Channel magnets power supplies
- RF (Step V or VI)


Integrates:

- Beamline
- DAQ
- target
- tracker
- absorbers
- SC magnets

30 May 2014

State Machine Effect on RunControl

State machines for magnet control greatly reduces complexity of RunControl. RC need only check state of each magnet. 30 May 2014 Bierrick M. Hanlet 35 of 37

Risks

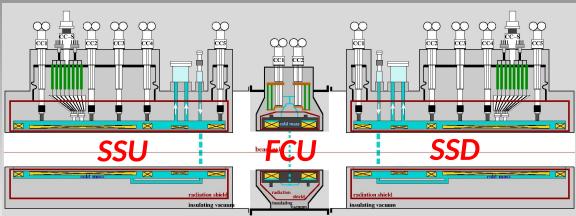
- Personnel
- Expertise
- Tests

Infrastructure

- computing
- code repository
- documentation

•Cleaning up

* lan Taylor* Chris Heidt


- production and development versions
- Alarm Handlers and Archivers
- testing tools

- Online systems in good shape: infrastructure and DAQ
- Much C&M progress since last MAP CM
- Resource loaded schedule completed
- Integrated HW plan in place
- State machines under development
- Still risks in personnel and expertise

Needs to be finished within ~10 months!

30 May 2014