

Detector Simulation/ Higgs studies

Mans Wenzel MAP14 May 30th , 2014

U.S. DEPARTMENT OF ENERGY

Outline

- Existing computing infrastructure (If You Build It Will They Come?)
- The mcdrcal01 detector
 - Performance of a homogenous, total absorption, dual read out calorimeter
- Short overview of Higgs studies
- Future plans (or the lack thereof)

Software framework

Used for ILC and CLIC physics studies: Many reconstruction modules available e.g.

- PFA
- Tracking, Vertexing, B-tagging

Good relations with SLAC group provide support, contribute to the tutorial, e.g. changes specific to the muon collider

MCDRD (Muon Collider Detector R&D): computing resources

Program

- Virtual Organization (VO): mcdrd
- Sign up at: https://www.fnal.gov:8443/voms/mcdrd
- (we have 250 dedicated slots + opportunistic on fermigrid and we are part of OSG)
- reference machine on the fermicloud: mcdrd.fnal.gov
 - To get an account contact service desk and request a fermicloud account and request access to mcdrd.
 - Grid submission software installed

TBs of dedicated disk space on bluearc: /grid/data/mcdrd

- software installed in: /grid/data/mcdrd/sw
- detectors jas-assembly-0.9.9 jdk1.7.0_21 mac slic
- data available in: /grid/data/mcdrd/data

MCDRD: computing resources (cont.)

100TB in fermilab mass storage system (dcache, enstore) /pnfs/mcdrd/Higgsfactory/

- --> software(dccp) installed on mcdrd to move data in and out of mass storage
- Many thanks to the FermiGrid team!!!!!

Muon Collider Documentation

Created Confluence page:

https://confluence.slac.stanford.edu/display/MCPDS/Home

Look for:

Documentation for Accessing MCD R&D Computing Resources.

Tutorial:

<u>https://confluence.slac.stanford.edu/display/ilc/Installing</u> <u>+lcsim+software+for+the+Winter+2012+tutorial</u>

You can <u>sign</u>up here:

https://jira.slac.stanford.edu/signup/

Changes to slic, LCDD and Geomconverter

- Slic now uses recent version of geant 4 and new build system (cmake).
- optical properties can be specified in compact.xml and propagate to .lcdd and .gdml files.
- Optical dual readout (scint. And Cerenkov) calorimeter now available. We (Alex, Jeremy, myself) implemented fast calculation of Cerenkov contribution(instead of using Geant 4 (slow)) \rightarrow makes simulation time acceptable.
- Can kill particles entering a specific volume (e.g. the tungsten cone)

The mcdrcal01 detector in org.lcsim

5T solenoidal field, radius=3.075m

Calorimeter dimensions: Rmin: 1.36 m Rmax: 3.07 m Length: 2x3.702 m

Hans Wenzel

June 21st

2013

Good relation with accelerator group, Easy to change detector design if e.g. shielding/MDI changes. Declared DMZ.

HF IR MARS15 Model: 3D View

Hans Wenzel

Motivation for calorimeter choice

- Precise:
 - total absorption (no sampling fluctuations),
 - dual readout correction,
 - Homogeneous;(no difference in ECAL and HCAL response) → results in excellent energy resolution and linearity.
- Fast:

30th

Mav

- Cerenkov light is prompt, new photon detectors like SiPM show excellent timing capabilities → provides handle to get muon decay backgrounds under control.
- Finely granulated:
 - Improve reconstruction even further with PFA algorithms.

Calorimeter Properties for Barrel and Endcaps

	EM	Hadron	Muon
Material	BGO/PbF ₂ /PbWO ₄	BGO/PbF ₂ /PbWO ₄	Iron
Density [g/cm^3]	7.13/7.77/ <u>8.29</u>	7.13/7.77/ <u>8.29</u>	7.85
Cell size [cm^3]	1x1x2	2x2x5	10x10x1 0
Layers	10	30	22
Detector Depth [cm]	20	150	220
Radiation Length [cm]	1.1/0.93/ <u>0.89</u>	1.1/0.93/ <u>0.89</u>	1.76
Nuclear Interaction Length [cm]	22.7/22.4/ <u>20.7</u>	22.7/22.4/ <u>20.7</u>	16.8
Total Nr of IA length (em +had)	7.5 /7.	6/ <u>8.2</u>	

Hans Wenzel

June 21st

Motivation for tracker choice

- Precise:
 - To achieve the tracking goals (driven by btagging,PFA) while keeping the tracker compact we require a high solenoidal magnetic field of 5 Tesla and use silicon tracking paired with a pixel vertex detector for high precision low mass tracking.
 - Fast timing and fast readout requires extra power and cooling and R&D will be necessary to achieve this while keeping detectors and support at the required low mass. (more CMS than ILC like)

Mcdrcal01: Tracker

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Simplified geometry: cylinders and disk no segmentation (virtual segmentation used in reconstruction)

Hans Wenzel

JAS3 – Event Browser

← → @ ▲ ■ Higgs_pythia_125.00_FTFPBERT.s							
🔍 Visibility 🥂 Info 🛸 Cuts	🛛 View 1 × 🛛 LCSim Event 🗵						
View	Run:0 Event: 14	Collect	ion: MCParticle	e size:211 flags:0			
α μ 🛇 🛛 Ω 🕈 🖋		·	PDG ID	Type Generator Stati	us Simulator Status		Parent
Types		0	14	nu_mu Final State	Left	23	
19900		1	11	e-Other (0)	Created In Simulation, Stopped	2	
		2	-13	mu+ Final State	Left	23	
	Ceren_HcalEndcapHits	3	-11	e+ Other (0)	Backscatter, Created In Simulation, Decayed In Calorimeter	5	
	🚽 🗕 🗋 Edep_EcalBarrelHits	4	2112	n Other (0)	Backscatter, Created In Simulation, Decayed In Calorimeter	5	=
	🛛 🕂 🗋 Edep_EcalEndcapHits	5	211	pi+ Other (0)	Created In Simulation, Decayed In Calorimeter	9	
	- C Edep HcalBarrelHits	6	22	gamma Other (0)	Created In Simulation, Decayed In Calorimeter	8	
		/	22	gammalOther (0)	Created In Simulation, Decayed In Calorimeter	8	
		8	221	piulotner (u)	Descued in Simulation, Decayed in Tracker	9	
	MCParticle	9	321	ni Final State	Decayed in Tracker	10	
	MCParticleEndPointEnergy	10	-211	pi-Final State	Packssatter Created In Simulation Stepped	13	
	🚽 🗕 🗖 MuonBarrelHits	12	22	aamma Einal State	Decayed In Colorimeter	14	
]	MuonEndcapHits	13	22	gamma Final State	Decayed in Calorimeter	14	
Instances		14	111	ninIntermediate	Decayed in calorimeter	15	
		15	-21.3	rho-Intermediate		16	
	IkrEndcapHits	16	-421	D0-bar Intermediate		18	
	🔰 — 🗋 VtxBarrHits	17	22	gamma Final State	Decaved In Calorimeter	18	
	🔰 — 🗋 VtxEndcapHits	18	-423	D*0-bar Intermediate		22	
	MCParticleTree	19	2112	n Other (0)	Backscatter, Created In Simulation, Decayed In Calorimeter	21	
		20	2112	n Other (0)	Backscatter, Created In Simulation, Decayed In Calorimeter	21	
		21	-211	pi-Final State	Decayed In Calorimeter	22	
		22	-10413	unknown Intermediate		23	
		23	511	B0 Intermediate		25	
		24	22	gamma Final State	Decayed In Calorimeter	25	
		25	513	B*o Intermediate		181	
		26	2112	n Other (0)	Backscatter, Created In Simulation, Decayed In Calorimeter	27	
		27	211	pi+ Final State	Decayed In Calorimeter	31	
		28	22	gamma Final State	Decayed in Calorimeter	30	
		29	22	gamma Final State	Decayed in Calorimeter	30	
		30	212	più intermediate		31	
		22	213	norma Einal State	Decayed In Calerimeter	41	
		32	2112	p Other (0)	Backscatter Created In Simulation Decayed In Calorimeter	36	
		34	2112	n Other (0)	Backscatter, created in Simulation, Decayed in Calorimeter	36	
		35	2112	n Other (0)	Backscatter, created in Simulation, Decayed in Calorimeter	36	
✓ Apply immediately Apply		36	-211	pi-Final State	Decaved In Calorimeter	40	
		37	2112	n Other (0)	Backscatter.Created In Simulation.Decaved In Calorimeter	39	
Hide Types below level:	4 -	38	2112	n Other (0)	Backscatter, Created In Simulation, Decayed In Calorimeter	39	
D Bide testes as holes level		39	211	pi+ Final State	Decayed In Calorimeter	40	
Hide Instances below level:		40	113	rho0 Intermediate	· · · · · ·	41	
JAS3Tree × 🕅 WIRED ×				· · ·			
EcalEndcap							
rag to rotate using virtual ball; Shift-drag to rotate o	over vertical axis; Ctrl-drag to rotate o	ver horiz	ontal axis.				255.0/636.7MB
2345	· · · · · · · · · · · · · · · · · · ·				7.2 GB W: fez CHR 87.	93% 00:35:03 L0.00	0 2013-06-21 11:28

May 30th 2014

File Edit

Hans Wenzel

 $H^0 \rightarrow \tau^+ \tau^-$ event

May 30th 2014

Hans Wenzel

H⁰→ bb event

Hans Wenzel

H⁰→ bb event

Hans Wenzel

H⁰→ bb event (Edep Hits)

May 30th 2014

Hans Wenzel

H⁰→ bb event (cerenkov Hits)

21

May 30th 2014

Hans Wenzel

Single Muon

Hans Wenzel

Time Cuts – MuC Example

Scintillation Deposits vs log10 t - 1.5TeV Muc Bkg.

Scintillation Deposits vs log10 t - 25GeV Proton

Histograms weighted by energy. $log_{10}t$ time axis.

Muon Collider Backgrounds:

- Machine backgrounds from muon beam decay.
- Mostly photons and neutrons.
- Background not normalized.
- Signal in HCal, bkg in ECal.

Time Cuts:

- Majority of signal in first ns.
- Cuts should be in 3–10ns range.
- 3ns cut eliminates 92% of background, 5% of proton signal compared to 10ns cut.

	A. (Conway	UofC and FNAL	AWLC'14 13 / 31
Mav	30 th	2014	Hans Wenzel	23

Cerenkov Calibration Using Electrons

Convert number of Cerenkov photons to an energy.

- Use electrons with range of energies.
- Fit Cerenkov response at each energy with Gaussian.
- Fit electron energy to Cerenkov responses with line.
- Slope gives conversion factor for number of photons to energy.
- Also do this with scintillation.

Slope: $1.9 \times 10^{-5} GeV/photon$ $\rightarrow ~ 53,000 \ photons/GeV$

A. Conway			UofC and FNAL	AWLC'14	15 / 31
Mav	30 th	2014	Hans Wenzel	24	

Plot (S)cintillation response fraction vs. (C)erenkov/(S)cintillation.

Figure: C/S histogram and fit for 25 GeV proton, 3ns, 1/10 MIP cuts. Fit to 4th order polynomial in C/S. Use polynomial to obtain correction: $E_{corr} = S/Poly(C/S)$.

Single Hadron Resolution Curves

- Similar resolution curves per particle.
- Maintain high resolution with timing cuts.
- Correction curve changes, resolution doesn't.

Dual-Readout Resolution

Figure: Resolution curves for protons, neutrons, and pions with 'loose cut' of 10ns, 1/50 MIP, 'sharp cut' of 3ns, 1/10 MIP.

A. Conway		Conway	UofC and FNAL	AWLC'14 23 / 31	
wav	3U'''	2014	Hans wenzei	20	

Higgs studies at a MUC-Higgs factory

- Generator level studies → no full detector simulation
- Precision of mass/width measurement
 →given by accelerator.
- Detector: classify events → optimize signal/ bgr.

SM Background

(a) Irreducible background: $\mu^+\mu^- \to Z/\gamma^*$ with $M_{Z^*} = \sqrt{s}$.

(b) Reducible background: $\mu^+\mu^- \to Z^0, \gamma \text{ with } M_{Z^0} < M_{H^0}.$

28

Z Boson Masses

Branching ratios

Decay Mode		Ζ	H^0		
	BR	σ (pb)	BR	σ (pb)	
$u ar{u}, d ar{d}, s ar{s}$	0.427	160.6	0.0003	0.009	
$c\bar{c}$	0.119	44.8	0.032	0.91	
bb	0.152	57.2	0.584	16.5	
e^+e^-	0.034	12.8			
$\mu^+\mu^-$	0.034	12.8			
$\tau^+\tau^-$	0.034	12.8	0.071	2.01	
$\nu_{\ell}\overline{\nu_{\ell}}$	0.200	75.4			
gg		3 -	0.053	1.50	
$\gamma\gamma$. 		0.003	0.085	
WW^*		s 	0.226	6.39	
Z^0Z^0	2	2 <u></u>	0.028	0.79	
Total:	1.0	376.3	1.0	28.3	

Hans Wenzel

Event shape variables

H -> b-bbar Signal: Thrust

ACCe/

30th

Mav

2014

550 No Cut 500 Event Shape and Energy Cuts 450 400 350 300 250. 200. 150 100-50-0. 0.1 0.0 0.2 0.3 0.4 0.5 0.6 Major Axis

30

Figure 6: Effects of event shape and energy cuts on Higgs bb signal and background. Cuts were made by selecting events with total energy $E_{tot} > 98.0 GeV$ visible to the detector, thrust between 0.94 and 1.0 and major axis between 0.0 and 0.2. The signal is reduced to 52% and the background to 15%.

Hans Wenzel

H -> b-bbar Signal: Major Axis

30th

Mav

2014

Figure 7: Simulated event counts for a scan across a 126.0 GeV Higgs peak with a 4.2 MeV wide Gaussian beam spread, counting $X \rightarrow b\bar{b}$ events with a total energy of at least 98.0 GeV visible to the detector and cutting on event shape parameters. Data is taken in a 60 MeV range centered on the Higgs mass in bins separated by the beam width of 4.2 MeV. Event counts are calculated as Poisson-distributed random variables and the data is fit to a Breit-Wigner convoluted with a Gaussian plus linear background. The fit width is 4.78 ± 0.48 MeV, the error in the mass measurement is 0.01 ± 0.05 MeV and the branching ratio is measured at 0.271 ± 0.001 . Total luminosity is $1000pb^{-1}$, or $71.4pb^{-1}$ per point.

Channel		$\Gamma_{H \to X}(MeV)$	$\Delta M_H(MeV)$	$Br(H^0\to X)$
Total	Raw	4.56 ± 1.52	0.13 ± 0.16	0.96 ± 0.04
Total	Cut	5.57 ± 1.33	-0.02 ± 0.14	0.65 ± 0.01
bb	Raw	3.49 ± 1.83	-0.06 ± 0.19	0.67 ± 0.05
00	Cut	4.78 ± 0.48	0.01 ± 0.05	0.271 ± 0.001
W/W/*	Raw	4.06 ± 0.24	0.00 ± 0.07	0.217 ± 0.001
	Cut	3.96 ± 0.17	-0.16 ± 0.04	0.1271 ± 0.0002
$\tau^+\tau^-$	Raw	4.82 ± 4.46	-0.54 ± 0.47	0.0623 ± 0.0005
	Cut	0.84 ± 2.97	1.07 ± 0.30	0.24 ± 0.23
$\gamma\gamma$	Raw	2.85 ± 5.73	-0.6 ± 0.9	0.0035 ± 0.0001
	Cut			

Table 3: Fitted values of Higgs decay width, mass and branching ratio from simulated data. Mass values are the difference between the measured mass and the true mass of 126,000 MeV. Total integrated luminosity was 1 fb^{-1} , or $71.4pb^{-1}$ per data point.

30th

2014

Mav

Figure 9: Box-and-whisker plots of fitted values of the Higgs mass, $b\bar{b}$ partial width and $b\bar{b}$ branching ratio for 40 experiments at each luminosity. Integrated luminosity is the total luminosity taken in 14 bins 4.2 MeV apart in a 60 MeV range centered on the Higgs mass. The boxes extend to the upper and lower quartiles of the data and the 'whiskers' extend to the most extreme value within 1.5 times the inner-quartile range.

Future plan

- Make sure the work isn't lost
- Maintain computing infrastructure?
- Archived detector descriptions/analysis programs.
- All modifications to the core software are part of the ILC software distribution.