Neutrino Interaction Physics at nuSTORM

Ryan Bayes

Experimental Particle Physics School of Physics and Astronomy University of Glasgow

28 May, 2014

Introduction

- 2 Physics Case for Neutrino Interactions at nuSTORM
- InuSTORM Near Detector Physics Potential
- 4 Near Detectors for nuSTORM
- 5 Concluding Statements

Benefits of Muon Storage Rings for Neutrino Interactions

Produce multiple high quality beams of different flavours

- μ^+ decay produces ν_e and $\bar{\nu}_\mu$ in equal quantities
- ν_{μ} beam from π^+ decay (specific to nuSTORM and MOMENT)

Excellent energy range for interaction studies

- All neutrino beam energies between 0 and 4 GeV.
- Equal shares of QES and DIS interactions in this region.

Strong control over systematic effects

- Muon-decay beam energy and content precisely known.
- Pion beam flux with low contamination.

< ロ > < 同 > < 回 > < 回 >

The nuSTORM Facility

- 120 GeV proton beam incident on a graphite target produce pions.
- Pions are horn captured, transported, and injected into ring.
 - 52% of pions decay to muons before first turn
- Muons within momentum acceptance circulate in ring.
- Muon lifetime is 27 orbits of decay ring.

Introduction

Flux from Muon Decay in a Muon Storage Ring

In the SM ν_e appear in the distribution,

$$\frac{d\Gamma}{dy} = \frac{m_{\mu}^5 G_F^2}{16\pi^3} y^2 (1-y)$$

• ν_{μ} appear in a distribution,

$$rac{d\Gamma}{dy} = rac{m_{\mu}^5 G_F^2}{192 \pi^3} y^2 (3-2y)$$

Boost spectrum in 2^ˆ

$$\vec{p}_{\nu}' = \vec{p}_{\nu} + \frac{(\gamma - 1)}{\beta^2} (\vec{p}_{\nu} \cdot \vec{\beta}) \vec{\beta} + \gamma \vec{\beta} E_{\nu}$$

• Neutrino flux is inferred from integrating decays in straight.

Ryan Bayes (University of Glasgow)

nuSTORM Interaction Physics

Sterile Neutrino Studies¹

- Assume sample of 1×10^{18} useful μ^+ decays.
- 1.3 kTon iron-scinitillator calorimeter detector.
- Assume a 0.5% rate and 0.5% cross-sectional systematic.
- In absence of interaction studies 0.5%→5%.

Interaction Specific Studies at nuSTORM

- Interaction rates must be understood by type.
 - Dictates significance of systematic effects in oscillations.
- Many interaction types only accessible with nuSTORM beams
- Data deficient in ν_e interactions.
 - Muon storage ring the best known method to fill this gap.

4.5 5 0.5 F GeV

-

F GeV

Beam Uncertainty Study

- Generated muon beam with dispersion inflated by 2%.
- Expect transverse μ beam uncertainty of <1%.

Rate Difference

4 A N

Potential for Cross-Section Measurement

 Flux uncertainties a significant contribution to cross-sections 		μ^+		μ^-	
		Channel	N _{evts}	Channel	N _{evts}
		$\bar{ u}_{\mu}$ NC	1,174,710	$\bar{\nu}_e \text{ NC}$	1,002,240
		ν_e NC	1,817,810	$ u_{\mu} \; NC$	2,074,930
Experiment	Flux Error	$\bar{ u}_{\mu}$ CC	3,030,510	$\bar{\nu}_e$ CC	2,519,840
MiniBooNE	6.7—10.5%	ν_e CC	5,188,050	$ u_{\mu} \ CC$	6,060,580
T2K	10.9%	π^+		π^{-}	
Minerva	12%	$ u_{\mu} \text{ NC} $	14,384,192	$ar{ u}_{\mu}$ NC	6,986,343
nuSTORM	<1%	$ u_{\mu} \operatorname{CC} $	41,053,300	$ar{ u}_{\mu}$ CC	19,939,704

nuSTORM measurements limited by detector systematics.

Ryan Bayes (University of Glasgow)

nuSTORM Interaction Physics

Near Detector Requirements at nuSTORM

- Charge and flavour separation needs a magnetic field.
- Cross-section studies require good vertex resolution.
- Strong hadron calorimetry.
- Muon catcher (read as MIND) a universal requirement.
- Candidate technologies include
 - totally active scintillating detector.
 - liquid argon TPC.
 - high pressure gas argon TPC.
 - scintillating fibre tracker.
 - bubble chamber
- One detector will not be enough.
 - What makes a good vertex detector confounds PID
 - A system of detectors should be considered i.e. $\text{MINE}\nu\text{A}$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Inclusive Cross-Section Measurement in Liquid Argon²

- Considered a 100 t LAr detector in the CCQE channels.
- Clean event reconstruction wi/ good fiducial cuts.
- Assuming 10 million events/year and 10 ms window
 - Event rate: 1 mHz
 - Pile up of a few events per hour.
- Clustering and PID is still in development.

Assumed LAr simulation parameters

• Determined that a potential 6 fold increase in precision possible.

²arXiv:1308.6822v1

Ryan Bayes (University of Glasgow)

28 May, 2014 11 / 14

Near Detectors for nuSTORM

Weak Interaction Studies in Liquid Argon

Ryan Bayes (University of Glasgow)

nuSTORM Interaction Physics

Proposed Near Detector Systems

- LBNE Near Detector, HIRESMUNU
 - Straw tube tracker, (S. Mishra & R. Petti).
 - Builds on NOMAD experience
 - Foil layers for some nuclear targets
- LBNO / LAGUNA Near Detector
 - Install @ nuSTORM prior to LBNO.
 - High pressure gas Ar TPC, with fully active calorimeter.
 - Potential for hydrogen target.

Ryan Bayes (University of Glasgow)

nuSTORM Interaction Physics

28 May, 2014

13/14

Conclusions

- A rich range of interaction physics is available at nuSTORM
- Beams from muon decay present avenues not otherwise available to accelerator facilities.
- A neutrino interaction program must be intentionally planned at nuSTORM
 - Near detector facilities cannot be considered as an afterthought.
 - An advanced detector system should be considered.
- Must make the case that this is important physics in its own right.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >