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Introduction

Benefits of Muon Storage Rings for Neutrino
Interactions

Produce multiple high quality beams of different flavours

e .t decay produces ve and 7, in equal quantities
@ v, beam from 7 decay (specific to nuSTORM and MOMENT)

Excellent energy range for interaction studies
@ All neutrino beam energies between 0 and 4 GeV.
@ Equal shares of QES and DIS interactions in this region.

Strong control over systematic effects
@ Muon-decay beam energy and content precisely known.
@ Pion beam flux with low contamination.
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The nuSTORM Facility

@ 120 GeV proton beam incident on a graphite target produce pions.
@ Pions are horn captured, transported, and injected into ring.
e 52% of pions decay to muons before first turn

@ Muons within momentum acceptance circulate in ring.
@ Muon lifetime is 27 orbits of decay ring.
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@ Schematic representation of nuUSTORM
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Flux from Muon Decay in a Muon Storage Ring

Neutrino distributions from 2Ty
unpolarized muon decays at rest sk —v
@ In the SM v, appear in the g
distribution, g 1
ar_ miGE L “os
d7y_167T3y(7y) O:H\H‘\H‘\H‘\H‘
0 0.2 0.4 0.6 0.8 1
. . . . Reduced Energy
@ v, appear in a distribution,
@ The reduced energy
dy 192737 Y @ Boost spectrum in 2
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p/V:pU+ (762 )(pu'ﬁ)5+7ﬁEu J

@ Neutrino flux is inferred from integrating decays in straight.
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Physics Case for Neutrino Interactions at nuSTORM

Sterile Neutrino Studies’

@ Assume sample of 1x10'8 useful x* decays.

@ 1.3 kTon iron-scinitillator calorimeter detector.

@ Assume a 0.5% rate and 0.5% cross-sectional systematic.
@ In absence of interaction studies 0.5%—5%.
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Interaction Specific Studies at nuUSTORM

Interaction Channels
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Beam Uncertainty Study

@ Generated muon beam with

dispersion inflated by 2%.

Bin errors from 2% divergence error

9000 ; Entries = 70
@ Expect ’Fransverse w beam 8000 e oooras
uncertainty of <1%. 7000
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Potential for Cross-Section Measurement
Event Rate per 102" POT, 100 tonnes at 50 m

@ Flux uncertainties a T —
significant contribution s s

. Channel N, Channel N
to cross-sections evis evts

7, NC 1,174,710 | 7 NC 1,002,240
veNC 1,817,810 | »,NC 2,074,930
Experiment  Flux Error 7,CC 3,030,510 | 7% CC 2,519,840
MiniBooNE  6.7—10.5% | ,,CC 5,188,050 | v, CC 6,060,580

T2K 10.9% p— T
Minerva 12% v, NC 14,384,192 | 7, NC 6,986,343
nuSTORM <1% v, CC 41,053,300 | #,CC 19,939,704

@ nuSTORM measurements limited by detector systematics.
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Near Detector Requirements at nuSTORM

@ Charge and flavour separation needs a magnetic field.
@ Cross-section studies require good vertex resolution.
@ Strong hadron calorimetry.

@ Muon catcher (read as MIND) a universal requirement.
@ Candidate technologies include

totally active scintillating detector.

liquid argon TPC.

high pressure gas argon TPC.

scintillating fibre tracker.

bubble chamber

@ One detector will not be enough.

e What makes a good vertex detector confounds PID
o A system of detectors should be considered i.e. MINEvA
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Inclusive Cross-Section Measurement in Liquid Argon?

° Consider_ed a 100 t LAr Assumed LAr simulation parameters
detector in the CCQE

Effect Value
channels. : .
Momentum resolution of contained tracks | 3%

@ Clean event Angular resolution 3%
reconstruction wi/ good Minimum range for track finding 2cm
fiducial cuts. B T .

@ Assuming 10 million E : ) E
events/year and 10 ms R e A E
window ~E . - E

o Eventrate: 1 mHz T T T e, L o B

o Pile up of a few
events per hour.
@ Clustering and PID is
still in development.
@ Determined that a potential 6 fold increase in precision possible.

ZarXiv:1308.6822v1
Ryan Bayes (University of Glasgow) nuSTORM Interaction Physics 28 May, 2014 11/14

e




Near Detectors for nuSTORM

Weak Interaction Studies in Liquid Argon

@ Use v — e scattering as direct
probe of sin? .

@ Considered a 1kTon LAr TPC

with o(E) = 5%/E.
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~1.5% measurement at 2 GeV

Studies conducted by S.
Agarwalla and C. Tunnel

Need to.re-evaluate.
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Proposed Near Detector Systems

@ LBNE Near Detector, HIRESMUNU
e Straw tube tracker, (S. Mishra & R. Petti).
@ Builds on NOMAD experience
o Foil layers for some nuclear targets
@ LBNO / LAGUNA Near Detector
o Install @ nuSTORM prior to LBNO.
e High pressure gas Ar TPC, with fully active
calorimeter.
e Potential for hydrogen target.
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Conclusions

@ Arich range of interaction physics is available at nuSTORM
@ Beams from muon decay present avenues not otherwise available
to accelerator facilities.

@ A neutrino interaction program must be intentionally planned at
nuSTORM

o Near detector facilities cannot be considered as an afterthought.
e An advanced detector system should be considered.

@ Must make the case that this is important physics in its own right.
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