SLAC effort in the collider design

Min-Huey Wang, Yuri Nosochkov, Yunhai Cai

MAP 2014 Spring Meeting (27-31 May, 2014), FermiLab USA

Outline

- Introduction
- Choosing of IP beta
- Linear optics
- Chromatic correction
- Beam dynamics properties

SLAC

• Summary

Introduction

SLAC

- CMS energy 3 TeV
- High luminosity
- Low β*
- Small circumference
- Sufficient momentum acceptance (~1%)
- Sufficient dynamic aperture for a beam with normalized emittance of ~25 $\mu mrad$
- Absence of long straight to avoid hot spot of neutrino radiation

Benchmark of 1.5 TeV Muon Collider design (by Y. Alexahin et al)

Frequency Map for the 1.5 TeV design

Beam-Beam parameter versus x&y beam size

- Muon energy 1.5
 TeV
- Normalized rms x sequence 25 μm.rad
- Bunch length 1 cm ^m/_E
- Particles per bunch 2e12
- Limit beam-beam parameter at IP to $\leq 0.1 \rightarrow \sigma_x \approx \sigma_y$

SLAC

Choosing of IP beta

IR linear optics for 3 TeV design

Arc cell linear optics for 3 TeV

Based on 1.5 TeV design by Y. Alexahin et al Field increased with energy: < 15T in quads, < 20T in bends

3 TeV Collider Ring linear optics

SLAC

Two IPs twofold symmetry Circumference: 2.77km; $v_x/v_y = 20.13/22.22$

Chromatic correction

- Local correction of chromatic beta beat and higher order chromatic tune shift created by the final focus quads
- Two pairs of -I x and y correction sextupoles placed $n\pi$ in x or y phase from the final focus quads
 - large x/y or y/x beta ratio at the IR sextupoles for orthogonal correction
 - cancellation of IR sextupole geometric aberrations
 - no other sextupoles within each IR sextupole pair to minimize octupole-like tune shift with amplitude
- Arc cell design and the arc sextupole correction scheme at this moment are based on 1.5 TeV design (by Y. Alexahin et al)

IR chromatic W-function

IIE 1=01=1 M

D (m)

SLAC

IR Magnets

Main parameters

			SLAC
Parameter	Unit	1.5 TeV design	3 TeV design
Beam energy	TeV	0.75	1.5
Number of IPs		2	2
Circumference	m	2730	2767
β*	cm	1	1
Tune x/y		18.56/16.58	20.13/22.22 (temporary)
Momentum compaction		-1.30E-05	-2.88E-04
Normalized emittance	(π)mm·mrad	25	25
Momentum spread	%	0.1	0.1
Bunch length	cm	1	1
Muons/bunch	10 ¹²	2	2
Repetition rate	Hz	15	15
Average luminosity	10 ³⁴ cm ⁻² s ⁻¹	1.1	4.5

The average luminosity presented here does not take into account of BB or hourglass factor. The change of luminosity is due to muon beam energy.

Lattice non-linear properties

Dynamic aperture w/o errors

- A preliminary design of 2.77 km 3TeV CM energy muon collider ring is presented
- The IR chromatic correction scheme uses –I noninterleaved pairs of sextupoles
- On-energy dynamic aperture currently is 90 sigma in x-plane and 2 sigma in y-plane
- Several improvements are being considered:
 - Improve IR nonlinear chromatic correction scheme
 - Investigate a new design of the arc cell
 - Adjust betatron tune to a more reasonable value above half integer

Reference

- Y. I. Alexahin et al., "Muon collider interaction region design", PRST-AB 14, 061001 (2011).
- Y. I. Alexahin et al., "A 3-TeV muon collider lattice design".
- A.V. Zlobin, et al., "Magnet designs for muon collider ring and interactions regions", proceedings of IPAC'10, Kyoto, Japan.