
recob::Wire Modifications

Bruce Baller

March 26, 2014

Outline

 Motivation for changing recob::Wire

 Regions Of Interest (ROIs) concept

 Implementation for MicroBooNE

 Pros and Cons

 Slides for later discussion

 Ruminations on other RecoBase objects

2

Motivation

 Wire signal and raw signal data products contain the full

readout window but the non-zero signal occupancy (aka

Region of Interest) is low

 Current scheme is to deconvolve RawDigits in all time

bins on each wire

 FFT requires data to be put in an array of size 2N complex

numbers – complex doubles since we are using ROOT

 For MicroBooNE

 Single 3200 tick readout frame 2 x 4096 numbers

 Single 9600 tick readout frame 2 x 16384 numbers

 Lots of unnecessary computation and storage

3

Current & Proposed Schemes

 Current scheme
 CalWire

 Initialize FFT service with FFTSize = ReadOutWindowSize

 Deconvolve RawDigits and create recob::Wire fSignal

 HitFinder
 Find Signal regions above threshold

 Fit to N Gaussians and create recob::Hits

 Proposed scheme
 CalWire

 Initialize FFT service with fcl file selectable FFTSize

 Find fabs(RawDigit) regions above threshold (= ROIs)

 Deconvolve ROIs and create WireSignalROI()

 HitFinder – 2 options
 Modify: Fit to N Gaussians using SignalROIs

 Don’t modify: Use WireSignal() method to get a zero padded signal
vector of length ReadOutWindowSize

4

Wire Signal – Current Scheme

Wire RawDigit()

vector<short>

ReadOutWindowSize ticks

Signal()

vector<float>

Deconvolve

Note:

ALL wire planes are deconvolved

ALL wire plane signals have ReadOutWindowSize ticks

5

ReadOutWindowSize ticks

Wire Signal ROI Scheme

ROI[0] ROI[1] ROI[2]

Small fixed FFT size

vector<float>

ROI[0]

Tick[0]

ROI[1]

Tick[1]

ROI[2]

Tick[2]

Deconvolve

WireRawDigit()

vector<short>

ROI[0]

Tick[0]
ROI[1]

Tick[1]

ROI[2]

Tick[2]

Modified Wire object:

vector<pair<unsigned int, vector<float>>>

6

ReadOutWindowSize ticks

What fraction of the Signal contains hit

information? - MicroBooNE

totLen = S bin length of all ROIs on a

wire

Occupancy per wire = totLen / dataSize

Test with 10 events from previous

MCC challenge – Genie + cosmics

Ave occupancy = 0.4%

Test with 100 events from nue_cosmic_3window

Ave occupancy = 0.3%

7

Wire.h Current

8

Wire.h Proposed

9

10

Wire.cxx Proposed

uboonecode/CalWireROI_module.cc fcl inputs

fThreshold (= 3)

fMinWid (= 4)

fMinSep (= 10) min separation between ROIs

fROIPad (= 10) pad ends of ROIs with signal baseline

SignalROI[0] SignalROI[1]

MicroBooNE Implementation

11

ArgoNeuT CalWire

modification one

big ROI per wire

12

Change CCHitFinder to

use ROIs

Find N bumps within

the ROI

Fit to N Gaussians

Get the ROIs on the

wire

13

Summary

 Pros

 Significant reduction in memory and file size using ROIs

 New Signal get method returns a zero-padded vector ala the

old Wire object

 Minimal changes to event display & hit finders

 The “bump hunting” code in the hit finders can be eliminated if

the SignalROI get method is used

 HitFinder HitFitter

 Cons

 A means of reading/converting existing MC files is needed if

this is deemed to be a requirement – is it?

 Alternatively, one could read existing MC files with v1_00_05

14

Ruminations on other RecoBase objects

 Use “graded approach” when considering changes to add

or remove features

 Roughly speaking …

 Thousands of hits per event be hard-nosed

 Hundreds of clusters per event

 Tens of tracks per event be loose

15

Ruminations on recob::Hit

 Used

 PeakTime x

 TotCharge dQ/dx

 s = EndTime - PeakTime

 Multiplicity, GoodnessOfFit

 Confusing

 maxCharge = amplitude

 totCharge = 2p s Amp

 Not filled/used/needed

 Sigma…

 Float has sufficient

precision

 Hit position resolution >

200 mm (xmax ~ 250.02 cm)

 Wire-to-wire ionization

fluctuations are large ~30%

16

Ruminations on recob::Cluster
Track-like clusters…

 Not useful

 fTotalCharge

 fdQdW (varies)

 Cluster slope

 Start dTdW End dTdW

 Cluster charge at
Start/End would be useful
for 3D track matching

 ClusterCrawler defines
Begin == end of the cluster
with the lower charge

 Float has adequate
precision – ala Hit

17

