Muon Experiments at PIP-II

R. Bernstein PIP-II Collaboration Meeting 4 June 2014

R. Bernstein, FNAL

PIP-II Muon Experiments

Disclaimer

- This is an overview and way too simplistic
- I will discuss this as an experimenter
- So therefore everything will not be even close to exactly right and all the definitions and boundaries are blurry.

R. Bernstein, FNAL

PIP-II Muon Experiments

4 June 2014

Physics Goals

- What Experiments Do We Want To Do?
 - primarily charged lepton flavor violation (CLFV), muons changing into electrons without neutrino emission

Kyle has talked
about Mu2e
$$\mu^{-}N \rightarrow e^{-}N \text{ and } \mu^{-}N \rightarrow e^{+}N(Z-2) \leftarrow \text{this comes}$$
$$\mu^{+} \rightarrow e^{+}\gamma \text{ and } \mu^{+} \rightarrow e^{+}e^{+}e^{-} \qquad \text{this comes}$$
"for free"

R. Bernstein, FNAL

PIP-II Muon Experiments

4 June 2014

Outline

- Why more than muon-electron conversion?
 - compare and contrast to isolate source of new physics
- What would you need to do a significantly more powerful new search in a decade?
 - changing landscape. want to be first-class no matter what.

R. Bernstein, FNAL

PIP-II Muon Experiments

4 June 2014

"Model-Independent" Lagrangian

μe Conversion and $\mu \rightarrow e\gamma$

CLFV:

probes masses up to 10⁴ TeV/c²

next generations are discovery experiments

new beams can build rich program

R. Bernstein, FNAL

Specific Examples

with BNL821 g-2

R. Bernstein, FNAL

PIP-II Muon Experiments

8

Combining MEG at PSI

with $\tau \rightarrow \mu \gamma$

4 June 2014

Surface Muon Beams

"Arizona Beam"

A. Pifer et al., NIM 135, 39.

- Pions range out and decay close to the surface of a target and yield muons at 29.8 MeV/c (MEG may go slightly sub-surface; see below eqn.)
 - Source is very well defined
 - Polarization (pion stopped) near 100%
 - μ^+ only since π^- would be captured on nuclei
 - positron contamination

$$R_{\mu} \sim p^{3.5} \sqrt{\left(3.5 \frac{\Delta p}{p}\right)^2 + \left(\Delta R_{\text{straggling}}\right)^2}$$

R. Bernstein, FNAL

PIP-II Muon Experiments

4 June 2014

Cloud Muon Beams

- Source bigger than production target
- Contamination of both charges of pions and electrons
- Low Polarization

R. Bernstein, FNAL	PIP-II Muon Experiments	4 June 2014
	10	

- Source much bigger than production target
- Polarization high; by using pion lifetime, contamination low
- Very flexible
 - neutrino horn beams

"cloud beam" but select pion momentum

• many deep-inelastic scattering experiments

R. Bernstein, FNAL

PIP-II Muon Experiments

4 June 2014

Experiments

- Reorder the experiments into beam type:
 - two stopped muon processes: $stopped \rightarrow +$

 $\mu^+ \rightarrow e^+ \gamma$ and $\mu^+ \rightarrow e^+ e^+ e^-$

• two captured muon processes in clouds

 $captured \rightarrow -$

 $\mu^- N \rightarrow e^- N$ and $\mu^- N \rightarrow e^+ N(Z-2)$

 muonium-antimuonium oscillation and muonium HFS from cloud beam

$$\mu^+ e^- \rightarrow \mu^- e^+$$

R. Bernstein, FNAL

PIP-II Muon Experiments

4 June 2014

MEG: $\mu \rightarrow e\gamma$

Measurement: < 5.7 x 10⁻¹³ @ 90%CL

J. Adam et al., arXiv:1303.0754

stopped muons at PSI

MEG: $\mu \rightarrow e\gamma$ J. Adam et al., arXiv:1303.0754

- LXe on one side
- Tracker on the "other" (not 180 because positron curls first)

MEG and Upgrades

closely related experimentally to $\mu^+ \rightarrow e^+ e^+ e^-$

• MEG: $\mu^+ \rightarrow e^+ \gamma$

PSI: ~51 MHz , 300 psec wide bursts

- need to stop muons and let them decay
- signal is back-to-back photon and electron

why DC

$$\mathcal{B} \propto \left(\frac{R_{\mu}}{D}\right) (\Delta t_{e\gamma}) \frac{\Delta E_e}{m_{\mu}/2} \left(\frac{\Delta E_{\gamma}}{15m_{\mu}/2}\right)^2 \left(\frac{\Delta \theta_{e\gamma}}{2}\right)^2$$

- R/D term is rate over duty cycle: want DC beam as constant as possible over macroscopic time: duty factor critical
- $\Delta \theta_{e\gamma}$ is vertexing: surface muons, well-defined stop location

R. Bernstein, FNAL PI	P-II Muon Experiments	4 June 2014
-----------------------	-----------------------	-------------

MEG Upgrade Plan

http://arxiv.org/pdf/1301.7225v2.pdf

1. Increasing the number of stopping muons on target;

2. Reducing the target thickness to minimize the material

traversed by photons and positrons on their

trajectories towards the detector;

3. Replacing the positron tracker, reducing its radiation length and improving its granularity and resolutions;

4. Improving the positron tracking and timing integration, by measuring the e+ trajectory to the TC interface; *(scintillation timing counter)*

5. Improving the timing counter granularity for better timing and reconstruction;

6. Extending the gamma ray detector acceptance;

7. Improving the gamma ray energy, position and timing resolution for shallow events *(conversion near entrance)*

8. Integrating splitter, trigger and DAQ while maintaining a high bandwidth.

R. Bernstein, FNAL

PIP-II Muon Experiments

4 June 2014

What Do They Have Now?

A. The MEG beam line and muon target

should regard this as a challenge

A schematic of the MEG beam fine and the $\pi E5$ channel is show in Fig. [1] Driven by the world's most intense DC proton machines at the Paul Scherrer Institut's high-intensity proton accelerator complex HIPA, it constitutes the intensity frontier in continuous muon beams around the world (c.f. Table [II]) and as such, is capable of delivering more than $10^8 \mu^+/s$ at 28 MeV/*c* to the MEG experiment. The surface muon beam has distinct advantages over a conventional 2-step pion decay-channel.

FIG. 11: (Left-part) shows the $\pi E5$ channel, connecting the production target *E* to the $\pi E5$ area. The MEG beam line starts from the extraction element Triplet I exiting the wall, followed by a Wien-filter, Triplet II and a collimator system, used to eliminate the beam contamination. The final range adjustment and focusing is performed by a superconducting solenoid BTS, before the muons are stopped in an ultra-thin target placed at the centre of the COBRA positron spectrometer.

R. Bernstein, FNAL

PIP-II Muon Experiments

4 June 2014

What Would We do Next?

- How Do We Progress?
 - approved MEG upgrade is x10 from existing: beyond that?
- This is pure speculation and my personal opinion:
 - convert the photon and use tracking
 - resolution on electrons from tracking far better than from calorimetry
- But you lose a lot of rate, since converter must be thin or experiment will suffer from multiple scattering

R. Bernstein, FNAL	PIP-II Muon Experiments	4 June 2014
	18	

Rough Guesses

- 10⁹ stopped muons/sec
- surface or sub-surface positive muon beam
 - recall $R \sim p^{3.5}$ so small drop in momentum is big change in range, helps with constraining vertex
- as continuous as possible (10-20 nsec rep rate probably fine)
- proton energy? depends on complex, but stopped beam is needed
- duty factor as high as feasible

R. Bernstein, FNAL	PIP-II Muon Experiments	4 June 201
--------------------	-------------------------	------------

19

Two Takeaways

- Duty Factor (qualitative)
 - recall accidental background scales as 1/D
 - run times increases with D
 - so experiment gets more difficult as 1/D²
- Machine Energy
 - what's important is stopped muons
 - lower energy beams that can be stopped in small range are better $R_{\mu} \sim p^{3.5} \sqrt{\left(3.5 \frac{\Delta p}{p}\right)^2 + \left(\Delta R_{\text{straggling}}\right)^2}$

R. Bernstein, FNAL

PIP-II Muon Experiments

4 June 2014

21

Mu2e Muon Beam: Three Solenoids and Gradient 4.6T ----> B-field gradient -----> 1T

To Pulse or Not To Pulse?

- Pulses:
 - width of pulse
 - time between pulses
 - shape of pulse
 - "extinction": suppress beam between pulses
- In general (but NOT a fine line)
 - stopped muon experiments want as DC a beam as possible to keep instantaneous rates low
 - capture muon experiments want varying pulse width and separation depending on lifetime in capture atom

R. Bernstein, FNALPIP-II Muon Experiments4 June 2014

What Exists? http://arxiv.org/pdf/1301.7225v2.pdf

Laboratory /		Energy / Present Surface Future e		ace Future estimated
	Beam line	Power	$\mu^{\!+}$ rate (Hz)	μ^+/μ^- rate (Hz)
	PSI (CH)	(590 MeV, 1.3 MW, DC)		
	LEMS	"	4 · 10 ⁸	
	πE 5	И	1.6 · 10 ⁸	
	HiMB	(590 MeV, 1 MW, DC)		$4 \cdot 10^{10} (\mu^+)$
	J-PARC (JP)	(3 GeV, 1 MW, Pulsed)		
		currently 210 KW		
	MUSE D-line	11	3 · 10 ⁷	
	MUSE U-line	"		4 · 10 ⁸ (μ ⁺) (2012)
	COMET	(8 GeV, 56 kW, Pulsed)		10 ¹¹ (µ ⁻) (2019/20)
	PRIME /PRISM	(8 GeV, 300 kW, Pulsed)		10 ^{11–12} (µ [–]) (> 2020)
	FNAL (USA)			
	Mu2e	(8 GeV, 25 kW, Pulsed)		5 \cdot 10 ¹⁰ (μ^{-}) (2019/20)
	Project X Mu2e	(3 GeV, 750 kW, Pulsed)		$2 \cdot 10^{12} (\mu^{-}) (> 2022)$
	TRIUMF (CA)	(500 MeV, 75 kW, DC)		
	M20	"	2 · 10 ⁶	
	KEK (JP)	(500 MeV, 2.5 kW, Pulsed)		
	Dai Omega	11	4 · 10 ⁵	
	RAL -ISIS (UK)	(800 MeV, 160 kW, Pulsed)		
	RIKEN-RAL		1.5 · 10 ⁶	
	RCNP Osaka Univ. (JP)	(400 MeV, 400 W, Pulsed)		
	MUSIC	currently max 4W		10 ⁸ (µ ⁺) (2012)
				means> 10 ¹¹ per MW
	DUBNA (RU)	(660 MeV, 1.65 kW, Pulsed)		
	Phasatron Ch:1-111		$3\cdot 10^4$	
R. Bernstein, FNAL		PIP-II Mu	Jon Exp	periments

4 June 2014

²⁴

Japanese Plans

- different g-2 technique
 - "cold g-2", not magic momentum

 CLFV: DeeMe, separate from COMET and x100 less sensitive

and EDMs
 R. Bernstein, FNAL

PIP-II Muon Experiments

4 June 2014

Status: Much to Work On!

- yield of muonium too low to be useful; precise numbers hard to get
- surface muon rate way too low for competitive next-gen expt in CLFV
 - R. Bernstein, FNAL

U.S losing in pretty picture department PIP-II Muon Experiments 4 June 2014 26

Mu2e: Status

- US Mu2e at CD1 planning for CD2 this year
- Data ~2020
- See Knoepfel talks

R. Bernstein, FNAL

PIP-II Muon Experiments

4 June 2014

Pulsed Beam Structure

- Tied to prompt rate and machine: FNAL "perfect"
- Want pulse duration << $au_{\mu}^{
 m Al}$, pulse separation $pprox au_{\mu}^{
 m Al}$
 - FNAL Debuncher has circumference 1.7 μsec , ~x2 $au_{\mu}^{
 m Al}$
- Extinction between pulses < 10⁻¹⁰ needed

= # protons out of pulse/# protons in pulse

What Has to Change?

- If we see a signal, need to go to higher Z
- Lifetime of the captured muon decreases with higher Z
- For Au, lifetime = 72.6 nsec: *inside beam pulse*

Beyond Mu2e-II?

- You saw from Knoepfel that backgrounds are starting to be a problem for x10 better
- Can't have pbars; radiative pion capture within pulse; decay-in-orbit becoming significant; cosmic rays growing with running time
- technique hard to push on limits past Mu2e-II
 - if signal, need 5% measurement to split AI/Ti
 - but going to higher Z is problematic

R. Bernstein, FNAL

PIP-II Muon Experiments

4 June 2014

Different Muon Beams

http://www.sciencedirect.com/science/article/pii/S0920563211005330

- Would like to let all pions decay and then extract muons: no background, no extinction...
- Would be even better if muons nearly monochromatic: tightly controlled stopping location
 - PRISM/PRIME idea at J-PARC
 - FFAG kicker not on mass shell yet
 - Other ideas?
 - need some generic muon storage ring.

R. Bernstein, FNAL

PIP-II Muon Experiments

4 June 2014

V-A new physics: coupling

 $G_{\mathrm{Mu}\overline{\mathrm{Mu}}}$

• World's best limit from PSI : (Willmann, L., Jungmann, K. et al.(1999), Phys. Rev. Lett. 82, 49) $\Delta L = 2$

 $G_{MuMu} < 3 \times 10^{-3}G_F$ (Probability of spon. transition $< 8.2 \times 10^{-11}$)

- Wide variety of Beyond Standard Model Physics
- Could be improved x100 with better resolution and pulsed beam, so $\sim 10^{-5}G_F$

R. Bernstein, FNAL

PIP-II Muon Experiments

4 June 2014

33

Muonium-Antimuonium

- - the positron in antimuonium left behind after negative muon decay at "1s" energy of 13.5 eV
- But there's a muon decay background:
 - $\mu^- \rightarrow e^+ e^- e^+ \nu_\mu \bar{\nu}_e$
 - positron has low KE, electron detected

R. Bernstein, FNAL

PIP-II Muon Experiments

4 June 2014

So Pulse Beam to Suppress Muon Decay

- Wait enough muon lifetimes to suppress decays
- Want pulses (somewhat arbitrary) five muon lifetimes apart
- then the rest is the detector resolution
- should be able to do x100 better(from discussions with people who did last generation)
- muonium yield requirement not as stringent as cold g-2, should be manageable

R. Bernstein, FNAL PIP-II Mu	on Experiments 4 June 2014
------------------------------	----------------------------

Summary

- One accelerator? Multiple Accelerators?
 - that's for you to decide
- Sociological Comment: in neutrino world, get a big advantage from multiple neutrino experiments at one site; similar constructive interference between g-2 and Mu2e
 - grad student/post-doc pipeline
 - easier to build a program
 - well-demonstrated at PSI

R. Bernstein, FNAL

PIP-II Muon Experiments

4 June 2014

Conclusions: Beam Requirements

• Wide variety of beams required

R. Bernstein, FNAL

- pulse rates, muon energy, etc. vary
- Flexibility, Power, and High Duty Factor are needed

Physics Process	Continuous/Pulsed	Capture /Stopped	$\sim \#$ Muons	Muon KE
$\mu ightarrow 3e$	continuous	stopped	$\mathcal{O}(10^{18})$	surface
$\mu ightarrow e \gamma$	$\operatorname{continuous}$	$\operatorname{stopped}$	$\mathcal{O}(10^{18})$	surface
$\mu^- N \to e^- N$	pulsed	capture	$\mathcal{O}(10^{23})$	$\leq 50 { m MeV}$
$\mu^- N \to e^+ N(A, Z-2)$	pulsed	capture	$\mathcal{O}(10^{21})$	$\leq 50 { m ~MeV}$
$\mu^+ e^- \to \mu^- e^+$	pulsed	stopped	$\mathcal{O}(10^{15})$	surface

these are very rough numbersPIP-II Muon Experiments4 June 2014

³⁸