

Studies toward a next-generation Mu2e experiment

Kyle J. Knoepfel

Fermi National Accelerator Laboratory

June 4, 2014

Roadmap

- The next-generation study
- The physics of Mu2e
- The Mu2e experiment
- Why PIP-II is important to Mu2e
- Studies toward Mu2e-II

In what follows				
Mu2e	Current (baseline) Mu2e experiment			
Mu2e-II	Next-generation Mu2e using Project-X/PIP-II			

The Project-X Mu2e study (2013)

• A concentrated study was undertaken by Mu2e collaborators to determine the feasibility of a next-generation Mu2e experiment.

– Dedicated session at Snowmass for next-gen. Mu2e

- Our work is summarized here:
 - K. Knoepfel, et al, "Feasibility Study for a Next-Generation Mu2e Experiment", arXiv:1307.1168
 - A. Kronfeld, et al, "Project X: Physics Opportunities", arXiv:1306.5009
- Since then, the Mu2e collaboration has been working hard toward DOE CD2 approval (TDR) of the <u>baseline</u> experiment.

The Project-X Mu2e study (2013)

• A concentrated study was undertaken by Mu2e collaborators to determine the feasibility of a next-generation Mu2e experiment.

 (1) The studies shown today are based on those done for Snowmass – *i.e.* not 800 MeV.
 (2) For today I concentrate on issues that are downstream of the primary beamline.

 Since then, the Mu2e collaboration has been working hard toward DOE CD2 approval (TDR) of the <u>baseline</u> experiment.

Beamline assumptions

	Baseline	Mu2e
Beam kinetic energy	8	GeV
Beam power	8	kW
Protons-on-target (POTs)	3.6×10 ²⁰	
Run duration	3	years
Run time	2×10 ⁷	sec/year
Duty factor	0.32	
POT pulse full width	200	ns
POT pulse spacing	1695	ns
POT extinction*	< 10 ⁻¹⁰	

*fraction of POTs between proton pulses

Beamline assumptions

	Baseline	Mu2e	Project	t X (Al)
Beam kinetic energy	8	GeV	1	GeV
Beam power	8	kW	112	kW
Protons-on-target (POTs)	3.6×10 ²⁰		4.0×10 ²²	
Run duration	3	years	3	years
Run time	2×10 ⁷	sec/year	2×10 ⁷	sec/year
Duty factor	0.32		0.90	
POT pulse full width	200	ns	100	ns
POT pulse spacing	1695	ns	1695	ns
POT extinction*	< 10 ⁻¹⁰		< 10 ⁻¹²	

*fraction of POTs between proton pulses

Beamline assumptions

	Baseline	Mu2e	Projec	t X (Al)	PIP	-11
Beam kinetic energy	8	GeV	1	GeV	800	MeV
Beam power	8	kW	112	kW	100	kW
Protons-on-target (POTs)	3.6×10 ²⁰		4.0×10 ²²		4.5×10 ²²	
Run duration	3	years	3	years	3	years
Run time	2×10 ⁷	sec/year	2×10 ⁷	sec/year	2×10 ⁷	sec/year
Duty factor	0.32		0.90			
POT pulse full width	200	ns	100	ns		
POT pulse spacing	1695	ns	1695	ns		
POT extinction*	< 10 ⁻¹⁰		< 10 ⁻¹²		< 10 ⁻¹²	

*fraction of POTs between proton pulses

Assumed POT time distribution

- Timing structure due to artifacts of matching the 53 MHz beam from booster to the 2.5 MHz bucket in the recycler.
- For more details, see:

Mu2e Conceptual Design Report, Ch. 5. arXiv:1211.7019 [physics.ins-det]

Knoepfel - PIP-II/Mu2e

The physics

 Mu2e is an experiment searching for charged lepton flavor violation (CLFV) in muons:

$\mu^- + \mathrm{Al} \rightarrow e^- + \mathrm{Al}$

- This reaction is suppressed by the standard model (SM) to a level smaller than 10⁻⁵⁰.
- Allowed by many beyond-the-SM (BSM) models at levels just beyond current experimental limits.
- Excellent avenue for new physics exploration.

- Measure ratio of $\mu \rightarrow e$ conversions (CLFV) to the number of μ captures (SM).

$$R_{\rm up} = \frac{\Gamma[\mu^- + A(Z, N) \to e^- + A(Z, N)]}{(\rm BSM)}$$

$$\Gamma \Gamma_{\mu e} = \overline{\Gamma[\mu^- + A(Z, N) \to \nu_\mu + A(Z - 1, N)]}$$
 (SM)

- Measure ratio of $\mu \to e$ conversions (CLFV) to the number of μ captures (SM).

$$R_{\mu e} = \frac{\Gamma[\mu^{-} + A(Z, N) \to e^{-} + A(Z, N)]}{\Gamma[\mu^{-} + A(Z, N) \to \nu_{\mu} + A(Z - 1, N)]}$$

- Mu2e goal for *R*:
 - Single-event-sensitivity:
 - Upper limit (90% C.L.):
 -): ~ 1 × 10⁻¹⁶

2.5 × 10⁻¹⁷

- Probe BSM eff. mass scales of: $10^3 10^4 \text{ TeV/}c^2$
- Experimental signature?

- Measure ratio of $\mu \to e$ conversions (CLFV) to the number of μ captures (SM).

$$R_{\mu e} = \frac{\Gamma[\mu^{-} + A(Z, N) \to e^{-} + A(Z, N)]}{\Gamma[\mu^{-} + A(Z, N) \to \nu_{\mu} + A(Z - 1, N)]}$$

- Mu2e goal for *R*:
 - Single-event-sensitivity:
 - Upper limit (90% C.L.):
 - Probe BSM eff. mass scales of:
- Experimental signature?

2.5 × 10⁻¹⁷
~ 1 × 10⁻¹⁶
10³ - 10⁴ TeV/
$$c^2$$

Need at least 10¹⁸
muons.

- Measure ratio of $\mu \to e$ conversions (CLFV) to the number of μ captures (SM).

$$R_{\mu e} = \frac{\Gamma[\mu^{-} + A(Z, N) \to e^{-} + A(Z, N)]}{\Gamma[\mu^{-} + A(Z, N) \to \nu_{\mu} + A(Z - 1, N)]}$$

- Mu2e goal for *R*:
 - Single-event-sensitivity: 2.5×10^{-17}
 - Upper limit (90% C.L.): ~ 1 × 10⁻¹⁶
 - Probe BSM eff. mass scales of: $10^3 10^4 \text{ TeV/}c^2$
- Experimental signature?

$$E_e = m_{\mu}c^2 - E_b - E_{\text{recoil}}$$
$$= 104.973 \text{ GeV} \quad \text{(for Al)}$$

Knoepfel - PIP-II/Mu2e

S-shaped solenoid:

- collimator selects negatively-charged particles
- transports particles to detector area, and
- allows remaining pions to decay to muons

S-shaped solenoid:

- collimator selects negatively-charged particles
- transports particles to detector area, and
- allows remaining pions to decay to muons

Timing is important...

Baseline Mu2e

Timing is important...

Significant background is radiative pion capture (RPC)

 $\pi^- + \mathrm{Al}
ightarrow \gamma^{(*)}_{e^+e^-} + \mathrm{Mg}^*$

- Can produce electron at same energy as the signal electron
- Trick: Muon decays from AI are slow; RPCs are fast.

Wait out the RPCs before starting the live gate.

Knoepfel - PIP-II/Mu2e

Baseline Mu2e

Timing is important...

• Significant background is radiative pion capture (RPC)

$$\pi^- + \mathrm{Al}
ightarrow \gamma^{(*)}_{e^+e^-} + \mathrm{Mg}^*$$

- Can produce electron at same energy as the signal electron
- Trick: Muon decays from AI are slow; RPCs are fast.

Wait out the RPCs before starting the live gate.

Knoepfel - PIP-II/Mu2e

Total backgrounds (for 3 yrs)

Category	Source	Events
Intrinsic	μ decay in orbit	0.22
	Radiative μ capture	< 0.01
Late-arriving	Radiative π capture	0.03
	Beam electrons	< 0.01
	μ decay in flight	0.01
	π decay in flight	< 0.01
Miscellaneous	Antiproton	0.10
	Cosmic ray	0.05
	Pat. Recognition Errors	< 0.01
Total Background		0.41

Why consider next-generation Mu2e?

- Regardless of the Mu2e result, Mu2e-II is important:
 - Mu2e observed CLFV at $\geq 5\sigma$
 - Switch targets and measure ratio of rates to further disciminate models of underlying physics
 - Mu2e observes hints of CLFV at 3σ
 - Collect ×10 data to definitively resolve the situation
 - Mu2e sets stringent new limit on CLFV
 - Collect ×10 data and explore new parameter space

Our guidance:

- The goal was to study a next-gen. experiment according to the assumptions:
 - 1. Only modest changes to the Mu2e design would be implemented.
 - 2. The requisite number of POTs would be delivered so that Mu2e-II would have ×10 sensitivity wrt Mu2e.
 - 3. We did not consider *how* the protons would make it to the primary target.
 - 4. Desire less than 1 background event.

What is important for Mu2e-II?

- Mu2e-II is not just about getting more protons-on-target.
- There are beam properties that are important:
 - Kinetic energy is 8 GeV for Mu2e baseline:
 - Above proton-antiproton production threshold
 - 25% of estimated background
 - This is not a problem with PIP-II
 - Timing structure is important:
 - Pion backgrounds and muon acceptance

Moving to Project X

Knoepfel - PIP-II/Mu2e

Moving to Project X

Knoepfel - PIP-II/Mu2e

		Events
Category	Source	Current
Intrinsic	μ decay in orbit	0.22
	Radiative μ capture	< 0.01
Late-arriving	Radiative π capture	0.03
	Beam electrons	< 0.01
	μ decay in flight	0.01
	π decay in flight	< 0.01
Miscellaneous	Antiproton	0.10
	Cosmic ray	0.05
	Pat. Recognition Errors	< 0.01
Total Background		0.41

Using same event selection with Project-X, we get...

		Events	
Category	Source	Current	PX (Al)
Intrinsic	μ decay in orbit	0.22	2.14
	Radiative μ capture	< 0.01	< 0.01
Late-arriving	Radiative π capture	0.03	0.04
	Beam electrons	< 0.01	< 0.01
	μ decay in flight	0.01	0.01
	π decay in flight	< 0.01	< 0.01
Miscellaneous	Antiproton	0.10	
	Cosmic ray	0.05	0.16
	Pat. Recognition Errors	< 0.01	< 0.01
Total Background		0.41	2.36

		Events	
Category	Source	Current	PX (Al)
Intrinsic	μ decay in orbit	0.22	2.14
	Radiative μ capture	< 0.01	< 0.01
Late-arriving	Radiative π capture	0.03	0.04
	Beam electrons	< 0.01	< 0.01
	μ decay in flight	0.01	0.01
	π decay in flight	< 0.01	< 0.01
Miscellaneous	Antiproton	0.10	
	Cosmic ray	0.05	0.16
	Pat. Recognition Errors	< 0.01	< 0.01
Total Background		0.41	2.36

Dominant background by far is DIO for PX (AI).

Knoepfel - PIP-II/Mu2e

Some options to reduce DIO

- Reduce acceptance window
 - Significant reduction in signal acceptance
- Improve momentum resolution
 - Reduce stopping target material amount, but need more protons to have enough stopped muons.
 - Reduce the size of tracker straw walls
 - By moving from 15 µm to 8 µm walls, we obtain a significant improvement in DIO background:

$2.14 \rightarrow 0.26 \text{ events}$

giving an overall background of **0.46** events over three years running.

Some options to reduce DIO

- Reduce acceptance window
 - Significant reduction in signal acceptance
- Improve momentum resolution

What if we observe BSM signal with Mu2e (AI)?

We want to switch stopping target materials.

significant improvement in DIO background:

$2.14 \rightarrow 0.26$ events

giving an overall background of **0.46** events over three years running.

ed

Why use different targets?

 R is Z-dependent, and depends on the dominant operator in the Lagrangian

 Measuring R for different-Z targets gives some discrimination in pinning down the model

Moving to a different target

	Aluminum	Titanium
Stopped muons/POT (norm. to Al.)	1	1.3
% muons that decay	39%	15%
% of decays in sig. window	50%	30%
Time constant for muon decay	864 ns	297 ns

		Events	
Category	Source	Current	PX (Ti)
Intrinsic	μ decay in orbit	0.22	2.25
	Radiative μ capture	< 0.01	< 0.01
Late-arriving	Radiative π capture	0.03	0.05
	Beam electrons	< 0.01	< 0.01
	μ decay in flight	0.01	0.01
	π decay in flight	< 0.01	< 0.01
Miscellaneous	Antiproton	0.10	
	Cosmic ray	0.05	0.16
	Pat. Recognition Errors	< 0.01	< 0.01
Total Background		0.41	2.46

Baseline Mu2e configuration; moving to narrower straw walls...

Knoepfel - PIP-II/Mu2e

		Events	
Category	Source	Current	PX (Ti)
Intrinsic	μ decay in orbit	0.22	1.19
	Radiative μ capture	< 0.01	< 0.01
Late-arriving	Radiative π capture	0.03	0.05
	Beam electrons	< 0.01	< 0.01
	μ decay in flight	0.01	0.01
	π decay in flight	< 0.01	< 0.01
Miscellaneous	Antiproton	0.10	
	Cosmic ray	0.05	0.16
	Pat. Recognition Errors	< 0.01	< 0.01
Total Background		0.41	1.40

Larger than 1 background event, but an improvement.

Knoepfel - PIP-II/Mu2e

What would gold look like?

- Awfully difficult:
 - Only ~1% of muon decays are in signal window.
 - Can we sharpen the arrival time distributions?

Things to explore

How would we get protons to the primary target?

– Currently under study.

- For PIP-II we are not constrained to the 1695 ns time cycle.
 - What would be ideal for Mu2e-II?
 - For Ti, perhaps a shorter time cycle would be better.
- How can material upstream/part of tracker be optimized to improve momentum resolution?

Summary

- Mu2e will be sensitive to CLFV at new-physics mass scales of 10³ – 10⁴ TeV.
- Single-event sensitivity of 2.5×10⁻¹⁷ expected.
- PIP-II would be ideally suited for Mu2e-II:
 - No antiproton backgrounds
 - Proton timing structure can be tuned to reduce backgrounds/ increase muon acceptance as much as possible.
- Improving sensitivity by a factor of 10 is conceivable through a Project-X-like facility with only modest upgrades to the currently planned facility.
- Preliminary Project-X studies were performed indicating Ti is a possibility.

Summary

- Mu2e will be sensitive to CLFV at new-physics mass scales of $10^3 10^4$ TeV.
- Single-event sensitivity of 2.5×10⁻¹⁷ expected.
- PIP-II would be ideally suited for Mu2e-II:
 - No antiproton backgrounds
 - Proton timing structure can be tuned to reduce backgrounds/ increase muon acceptance as much as possible.
- Improving sensitivity by a factor of 10 is conceivable through a Project-X-like facility with only modest upgrades to the currently planned facility.
- Preliminary Project-X studies were performed indicating Ti is a possibility.

Thank you.

http://mu2e.fnal.gov

Back-up Slides

Factor 10 improvement in R

- It's not just more statistics.
- The pulse separation of previous experiment: 20 ns.
- The 1695 ns proton pulse separation allows various backgrounds to significantly dissipate before we start the livegate.

Charged Lepton Flavor Violation

- Forbidden by Standard Model suppressed to the 10⁻⁵⁴ level
- Allowed by various new physics scenarios
- CLFV parameterized by model-independent Lagrangian:

$$\mathcal{L}_{\text{CLFV}} = \frac{m_{\mu}}{(1+\kappa)\Lambda^2} \overline{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(1+\kappa)\Lambda^2} \overline{\mu}_L \gamma_{\mu} e_L \left(\sum_{q=u,d} \overline{q}_L \gamma^{\mu} q_L \right)$$

1

Charged Lepton Flavor Violation

- Forbidden by Standard Model suppressed to the 10⁻⁵⁴ level
- Allowed by various new physics scenarios
- CLFV parameterized by model-independent Lagrangian:

$$\mathcal{L}_{\rm CLFV} = \frac{m_{\mu}}{(1+\kappa)\Lambda^2} \overline{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu}$$

$$+ \frac{\kappa}{(1+\kappa)\Lambda^2} \overline{\mu}_L \gamma_\mu e_L \left(\right)$$

 $\mu
ightarrow e \gamma$ proportional to dipole term only

No sensitivity if κ is large

Charged Lepton Flavor Violation

- Forbidden by Standard Model suppressed to the 10⁻⁵⁴ level
- Allowed by various new physics scenarios
- CLFV parameterized by model-independent Lagrangian:

$$\mathcal{L}_{\text{CLFV}} = \frac{m_{\mu}}{(1+\kappa)\Lambda^2} \overline{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(1+\kappa)\Lambda^2} \overline{\mu}_L \gamma_{\mu} e_L \left(\sum_{q=u,d} \overline{q}_L \gamma^{\mu} q_L \right)$$

 $\mu N
ightarrow e N$ proportional to both terms Sensitivity for all κ

How far can CLFV experiments reach?

- Direct observation of CLFV new physics at LHC constrained to ~few TeV.
- Baseline Mu2e will exclude CLFV mass scales greater than 3×10³ TeV.
- Factor 10 improvement in sensitivity pushes exclusion up to 6×10³ TeV.

Stopped muon lifetime

Backgrounds from pion capture

Timing is everything...

Out-of-time protons

- Can create RPC backgrounds we cannot reject.
- Need to make sure this doesn't happen!
- Need proton-beam extinction at the level of 10⁻¹⁰.

Out-of-time protons

- Can create RPC backgrounds we cannot reject.
- Need to make sure this doesn't happen!
- Need proton-beam extinction at the level of 10⁻¹⁰.

