

EUROPEAN SPALLATION SOURCE

ESS

Accelerator and target

Mats Lindroos on behalf of the ESS PIP-II workshop / June 2014

A European research center Bridge

Copenhagen Copenhagen-University CPH Airport

SE-DK IDEON Innovation Environment Incubators Venture Capital Marketing Advice

> Neutron Source

MAX IV

EUROPEAN

SPALLATION

ESS - Bridging the neutron gap

17 nations committed to build ESS

Cash contributions from Sweden, Denmark and Norway 50% of construction and 15-20% of operations costs In-kind contributions from the other 14 nations

Construction cost: 1843 M€ Operation cost: 140 M€ Decommissioning cost: 177 M€

ESS AB 2014, ca 250 personer, 32 nationaliteter

ess

EUROPEAN SPALLATION

Road to realizing the world's leading facility for research using neutrons

Helicopter view of ESS

Build and operate a 5 MW SCRF linac

Prototyping the ESS accelerator

EUROPEAN SPALLATION SOURCE

7

Plans

HIGH LEVEL SCHEDULE - ESS ACCELERATOR

EUROPEAN SPALLATION SOURCE

Ion Source and Normal-Conducting Linac

Prototype proton source operational, and under further development, in Catania. Output energy 75 keV.

Design exists for ESS RFQ similar to 5 m long IPHI RFQ at Saclay. Energy 75 keV->3.6 MeV.

Design work at ESS Bilbao for MEBT with instrumentation, chopping and collimation.

DTL design work at ESS and in Legnaro, 3.6 ->90 MeV.

Picture from CERN Linac4 DTL.

Spoke Cavities and Cryomodules

Superconducting double-spoke accelerating cavity, for particles with beta = 0.5, energy 90->216 MeV.

Cold tuner, to mechanically fine-tune the 352 MHz resonance frequency.

Cryomodule, holding two cavities at 2 K with superfluid helium. Length 2.9 m, diameter 1.3 m.

Power coupler, the antenna feeding up to 300 kW RF power to the cavities.

Single-spoke prototype for EURISOL

Cavity design done at IPN, Orsay, and prototype cavity has been ordered. Niobium procured and sent to manufacturer.

Cryomodule design highly advanced but not complete.

Elliptical Cavities and Cryomodules

Superconducting five-cell elliptical cavity (not ESS). Two families, for beta = 0.67, energy 216->561 MeV and beta = 0.86, energy 561->2000 MeV.

ESS elliptical cryomodule (not final) with 4 5-cell cavities and 4 power couplers for up to \sim 1 MW peak RF power.

Cavity and cryomodule design well advanced at Saclay.

Elliptical Cavities Cryomodule Technology Demonstrator, ECCTD, to be ready 2015.

EUROPEAN SPALLATION SOURCE

FIRST COLD TEST RESULT OF FIRST ESS HIGH BETA PROTOTYPE CAVITY

- Measurements done the 22th of May 2014 in <u>vertical cryostat</u> at CEA Saclay
- Testing conditions: CW mode
- Operating temperature: 2 K
- Resonant frequency of π mode (measured): 704.292788 MHz
- External coupling (measured) : $Q_i = 6.5^{e}9 \pm 1^{e}9$, $Q_t = 6.8^{e}12$
- Parameters used : G = 241, R/Q = 435.35 Ω (at β = 0.86), L_{acc} = 0.92 m

Next plans:

- Measurement of resonant frequency of 1st bandpass mode at 2K
- Measurement of resonant frequency of HOM at 2K
- If possible, increase accelerating field up to the quench limit
- Perform heat treatment at CERN at 650°C under vacuum

High-Energy Beam Transport

target wheel

The HEBT design is a contribution from ISA, Århus.

EUROPEAN SPALLATION SOURCE

-150 -100

100

150 x [mm]

RF Systems

SNS klystron gallery

	Frequency (MHz)	No. of couplers	Max power (kW)
RFQ	352.21	1	900
DTL	352.21	5	2150
Spokes	352.21	26	350
Medium betas	704.42	32	900
High betas	704.42	88	1100

Main features:

- One RF power source (klystron, IOT, ...) per resonator
- Two klystrons per modulator for ellipticals
- Pulsed-cathode klystrons for RFQ, DTL
- Gridded tubes (tetrodes or IOTs) for spokes
- Klystrons for medium-beta ellipticals, and as backup for high-beta
- Developments with industry for high-power IOTs

Layout of ESS linac tunnel and klystron gallery

Three cryogenic plants

- Accelerator: 3.1 kW @ 2K, 12.8 kW
 @40 50 K plus 8 g/s helium
 liquefaction
- Target: ~ 20 kW @ 16K
- Test & Instruments ~ 250 W@ 4.5 K and 200 W @ 40K

Distribution system

 Permits independent cool down & warm up of cryomodules, likely IKC

Cryoplant orders to be placed in 2015 with operations starting in 2017 - 2018

Further Components and Challenges...

- ... not mentioned for lack of time
- Beam instrumentation
- Control system (ICS)
- Machine protection
- Personnel protection
- Vacuum
- Test stands
- Cooling, electricity
- Installation
- Logistics
- Safety
- Reliability
- System engineering
- In-kind
- Time schedule
- Rudaet

Control-box prototype

Quadrupole doublet on girder with BPMs and diagnostics box

Beam-loss simulations

Cryogenic distribution

Cryomodule test stand

Target Wheel

- Tungsten slabs in 33 sectors
- Helium coolant
 - Mass flow 3 kg/s
 - Pressure 0,3 Mpa
 - Inlet temperature 20 °C
 - Outlet temperature 220 °C
- Rotational speed 25,5 rpm
- Wheel diameter 2,5 m
- Shaft length > 5 m

EUROPEAN SPALLATION SOURCE

Moderators and Reflectors

EUROPEAN SPALLATION

- Cold moderators
 - Super-critical hydrogen at 20 K and 1.5 MPa
 - Vessel in aluminium alloy
- Water moderator assemblies
 - Vacuum jacket
 - Thermal water
 - Pre-moderator surrounding the cold moderator vessel
 - Extended wings to facilitate thermal or bispectral beam extraction
- Inner reflector
 - Beryllium
 - Complex "cylindrical" aluminium vessel
 - Water cooled
 - Outer reflector
 - Steel
 - Water cooled
- Cut-outs
 - for the view path to the beam extraction
 - for the wheel

Neutron Beam Extraction

• Neutron beam extraction system design

- Four 60 degree sectors, whereof
 - · Two sectors view the upper moderators
 - Two sectors view the lower moderators
- In total 48 ports for potential neutron beam line location
- Neutron beam guide inserts can be located as close as 2 m from the surfaces of the moderators
- Cut outs in reflectors and shielding for view of the moderators by the neutron beam guide inserts
- Neutron beam windows separating the monolith helium atmosphere and the ambient atmosphere in the experimental halls

Moderator and reflector plug

ESS In-kind contributions potential

Collaborative projects

- ESS is an emerging research laboratory with (still) very limited capacity in-house
- Two possibilities:
 - Limit the scope of the project so that it can be done with in-house resources
 - Work in a collaboration where the scope of the project can be set by the total capacity (distributed) of the partners
- The accelerator part of the project well suited for this as this community has a strong tradition of open collaboration
- To keep cost down and to optimize schedule this requires that investments in required infrastructure is done at the partner with best capacity to deliver

ACCSYS update in-kind discussions

- Potential partners identified for 60% of the total planned/potential in-kind value
- Planned/potential in-kind is 78% of accelerator budget
- Many activities start Q1 2014, reflecting the importance of reaching agreements soon
 23

ESSnuSB

- New accumulation ring with staggered beam extraction using solid state switch driven ILC like strip line kickers of up to 100 pulses to match pulse length to moderators and simplify target design
- Linac operated with H- and at 28 Hz to keep both target station operating at 5 MW
- Support from ESS for Design study proposal

Neutron - antiNeutron oscillations

Neutron-Anti-Neutron Oscillations at ESS

12-13 June 2014, CERN, Geneva, Switzerland

Restord particle on Defense have present to be estimately advected protein of Technicarchical physics. Name and Restorm provided on adv are first single into 10° advectors. For the conductions provided to be of end-andre that the top quark is activately being 1 and Restor for the neutral being growth for the provided data of 00° vehicles and advectors and being space for the conductions and study of 00° vehicles and provide and being the top QUI and a basis of a neutral particutoring protein well being the top QUI and a basis of a neutral provided and protein well being the top QUI and a basis of any other of the advectories could advect the QUI and a filter of the protein advectors.

The construction of the Comparer Spatiation Sector is Lond, with And Society and Anti-2019, high-first with markets reaction system includes and the sector of singularity provided or construct a field of Society Sector of Sector and Sector Sector

(b) This section of the physics can be such an experiment with the discounted suggestion with the train experimental challenges and provide solutions. We have the section of an extension with the first single trained for the matter of a calibrate size to build and partners. The segmentation.

Organizing committee

Register before 19 Mayon www.refor.al.col.org

- Provided new physics occurs beyond the Standard Model at the mass scale of the order of 10² to 10³ TeV the oscillation time could be in the region of 10⁸ s
- The experimental search for neutron-antineutron oscillations was done at the ILL high flux reactor at Grenoble (1994). A neutron beam of intensity 10¹¹ n/s was propagated for a time t~-0.1 s in vacuum in a region shielded against the external magnetic field. No antineutron was detected in 2.4.10⁷ s running time.
- ESS can probably do more than two orders of magnitude better

EUROPEAN SPALLATION SOURCE

A sustainable research facility

1.8 Billion Euros: Biggest investment in Science ever in Scandinavia?

In modern time, definitely YES!

However, Tycho Brahe's Stjärneborg costed the Danish king 1% of the state budget in 1580.

"With better measurements of the stars positions and movements I can make much better horoscopes for you, your majesty!"

EUROPEAN Spallation Source

Short pulse neutron sources-SNS

- SNS, SC LINAC/Storage ring, 2007, 1.4 MW, 1 GeV, 26 mA in linac, 627 ns long pulse, 60 Hz
- Examples of challenges: Better understand stripping reaction in linac, accumulation in storage ring

Short pulse sources-LANCSE

- LANCSE, NC LINAC /Storage ring, 1972, 100 kW, 800 MeV, 17 mA in linac, 600 ns, 20 Hz
- Examples: Combined H- and H+ acceleration

Accelerated intensity at 800 MeV: **2.5x10¹³ ppp - 3.75x10¹³ ppp** (200 μA) (300 μA)

- Neutron scattering facility
- Two target stations
- Muon facility

Examples of challenges: Ceramic vacuum chambers, high space charge synchrotron

Linac layout

Inductive Output Tubes or klystrons?

• ESS

- Induction Output Tubes, IOTs
 - Higher electrical efficiency
 - They don't conduct in the absence of input drive
 - Compact
 - Short MTTR
 - Cheaper modulator (No high voltage switching)
- Why suddenly IOTs?
 - Development of Pyrolytic graphite grids
 - Solid state drivers

Courtesy of Morten Jensen (ESS)

Activity	Country	Start date	Value
11.3.2 Proton Source and LEBT	IT	2014-01-07	3 897 412
11.3.3 RFQ	FR	2014-01-07	7 838 071
11.3.4 MEBT	ES	2014-01-07	1 541 521
11.3.5 DTL	IT	2014-01-07	16 178 720
11.4 Spoke Cavitites and Cryomodules	FR	2015-01-07	15 119 256
11.5 Elliptical Cavities and Cryomodules	FR	2014-02-03	99 978 029
11.6 HEBT and Conventional Magnet Systems	DK	2014-01-07	18 367 193
11.8.4.5 High power amplifiers Spoke	IT	2015-12-01	14 032 400
11.8.5 High Power Voltage Converters	СН	2015-12-01	42 750 000
11.8.8 RF installation phase 1	IT	2016-01-04	3 355 680
11.8.9 RF installation phase 2	PL	2018-12-17	3 606 720
11.10.4 Uppsala test stand	SE	2017-07-06	725 000
11.11.5 Cryogenic Distribution	PL	2014-06-12	12 543 200
11.99.3 Installation Non-conventional utilities	PL	2014-03-19	3 764 384
11.99.6 Installation phase 1	PL	2017-11-07	887 120
11.99.7 Installation phase 2	PL	2020-06-02	538 254
Sum			245 122 960

Summary of activities (work packages or work units) where at least one specific partner has been identified and discussions with this partner has started

an Tion

Håkan Danared, IK manager ACCSYS

Activity	Country	Start date	Value
11.7 Beam Diagnostics	?	2014-01-07	19 474 646
11.8.2 Low Level RF Control and control system	?	2016-01-07	13 789 257
11.8.3 Master Oscillator phase distribution	7	2016-03-23	81 000
11.8.4.2 High power amplifiers RFQ	?	2015-01-07	554 000
11.8.4.3 High power amplifiers MEBT	?	2016-03-01	210 000
11.8.4.4 High power amplifiers DTL	?	2015-01-07	2 674 000
11.8.4.6 High power amplifiers Medium Beta	?	2016-01-26	11 430 000
11.8.4.7 High power amplifiers High Beta	?	2018-01-03	26 630 000
11.8.6 RF Distribution	?	2016-01-07	21 462 800
11.10.2 Lund Test Stand 1 (LU)	?	2015-01-07	1 592 000
11.10.3 Lund Test Stand 2	7	2015-01-07	6 604 400
11.11.2 Accelerator Cryoplant	?	2015-02-04	34 789 200
11.11.3 Instruments and test stand cryoplant	?	2015-06-30	7 259 196
11.12 Vacuum	?	2015-01-07	8 175 160
11.99.8 Accelerator survey and alignment	?	2014-03-21	175 920
Sum			154 901 579

Summary of activities where no specific partner has been identified or, in the case of beam instrumentation, where the WP is being reorganized such that start dates and values cannot be assigned at the moment

Many activities start Q1 2014, reflecting the importance of reaching agreements soon

- Planned in-kind contributions cover 48% of accelerator budget.
- Many items still open.
- Design phase is largely over now hardware contributions are needed.
- To reach >50% in-kind to accelerator, substantial commercial items must be obtained as in-kind.
- Nevertheless, in-kind to construction is far from "only procurement".
- In-kind is also an opportunity to local industry (study showed 80% of procurement budget spent within 100 km of large research facilities).

Håkan Danared, IK manager ACCSYS