PXIE Overview: Goal, Status, Strategy

Faul Derwent for all of those who have been working on PXIE

1

The Goals: stable and consistent

Front-End R&D Program (as proposed in Oct 2011)

- We are building an integrated systems test of the first ~30 MeV of Project X.
 - Validate the concept for the Project X front end, thereby minimizing the primary technical risk element within the Reference Design.
 - Demonstrate wideband chopper; low- β acceleration
 - · Operate at full design parameters
- Integrated systems test goals:
 - 1 mA average current with 80% chopping of beam delivered from RFQ
 - Efficient acceleration with minimal emittance dilution through ~30 MeV
- Collaboration between Fermilab, ANL, LBNL, SLAC, SNS, India
- Beam through β =0.1 , 0.2 CM at ~30 MeV with nearly final parameters (1 mA cw, 5 mA peak, arbitrary bunch chopping)

Nov 2012, PrX collab meeting, Sergei Nagaitsev

Page 2

The Hardware Layout

<mark>CIC-I</mark>I

PIP-II vs Project X

- PIP-II as specified still points towards CW operation
 - 800 MeV superconducting pulsed linac, extendible to support >2 MW operations to LBNE and upgradable to continuous wave (CW) operations
- Primary challenges from the CW capability:
 - a CW RFQ
 - bunch by bunch chopper in the MEBT
 - flexibility in pulse train for experiments
 - warm to cold transition near the MEBT dump
 - low β, high power SRF acceleration
- operation of SRF in both pulsed and CW modes

C|C-||

The Current Focus: being ready for the RFQ

- Anticipate RFQ delivery in February 2015
 - Goal to be prepared operate RFQ when it arrives
 - Building the LEBT and support infrastructure
 - Ion Source/LEBT : minimal beam characterization
 know the input beam to RFQ!
 - Diagnostics and equipment downstream to characterize
- Goal in FY15: to characterize the RFQ beam

<mark>BIB-</mark>II

Infrastructure: Well underway

- Water, power, and other utilities
- Cave and shielding blocks
- Shielding assessment for operation
- Network and controls
- Control Room at CMTF

• Ready for a working accelerator!

Ion Source

Current setup at CMTF

CIC-II

RFQ

- LBNL making good progress:
 - bead pull measurement on 2nd section
 - getting ready to go out for brazing
 - delivery anticipated in spring 2015
 - Derun will fill in on more details

Bead-pull setup on RFQ Section #2

RFQ Power Sources

- Amplifiers and Circulators are at CMTF!
 - Customs delay of a month
- Detailed Testing Plan: DocDB 1293
 - Amp and directional couplers to a fixed load
 - Full power test to measure the amplifer performance with respect to specifications
 - Circulators
 - Testing to start ~ late June
 - Should be ready for coupler tests in the fall

Ralph Pasquinelli

RFQ Power Sources

- Amplifiers and Circulators are at CMTF!
 - Customs delay of a month
- Detailed Testing Plan: DocDB 1293
 - Amp and directional couplers to a fixed load
 - Full power test to measure the amplifer performance with respect to specifications
 - Circulators
 - Testing to start ~ late June
 - Should be ready for coupler tests in the fall

Ralph Pasquinelli

MEBT

- FY15 goal: to characterize the beam coming out of the RFQ
 - Energy (±1%)
 - Longitudinal emittance: estimation with Faraday Cup (from SNS)
 - Transverse emittance: estimation with quadrupole scan (quads and trims fabricated by our collaborators at BARC)
 - test high average power operation mode
 either high current pulsed or low current CW
 - prepare for more detailed measurements in 2016
 - Making the best use of our resources
 - no dedicated diagnostics
 - use only those that are part of final MEBT

MEBT in FY15

- driven by resource limitations, doing work that is directly related to RFQ beam characterization
- RF commissioning of RFQ 10 kW (average) power
- Estimation of beam emittances and energy
- Hardware
 - 4 quad, 2 correctors fabricated at BARC being prepared for shipping now!
 - 1 bunching cavity (FY14)
 - BPMs prototyped in FY14
- Test Section: available for diagnostic tests, absorber tests, specific measurements (e.g., Faraday cup)
- Sasha Shemyakin will discuss in more detail Bunching

<mark>BIB-</mark>II

SRF Systems

- SC cryomodules operating at 2 K
 - Solenoidal focusing
 - Warm gap between cryomodules
 - Fast vacuum valves at both sides of the cryomodules
- 2 Systems: 1 CM apiece for PXIE
 - Half Wave Resonator (β_G=0.11) at 162.5 MHz
 - SSR1 (β_G=0.22) at 325 MHz

CIC-II

SRF Systems

- HWR Cryomodule: β_G=0.11
 - 2.1 MeV -> 11 MeV
 - 8 cavities, 8 SC solenoids (x,y correctors) and 8 BPMs
 - Argonne design
 Prototype cavities and couplers have been fabricated
 - Peter Ostroumov will discuss in more detail

Prototype cavities Dec 2013

C|C-||

SRF Systems

SSR1 Cryomodule: (β_G =0.22)

- 11 MeV -> 25 MeV
- 8 cavities, 4 SC solenoids (x,y correctors) and 4 BPMs
- Have production cavities

S1H-NR-105 The first production SSR1

- Test bed
 - to learn how to compensate Lorentz
 Force Detuning for pulsed operation in
 PIP-II

Cryogenic Plant

- Superfluid cryoplant is fully operational
- Cryomodule Test Stand ready - Q1 FY16 (LCLS-II)
- PXIE cryogenic system is in design phase

🛟 Fermilab

BIB-II

Summary

- Short Term Goal: ready for RFQ spring 2015
 - Infrastructure being put in place
 - Ion Source and LEBT installation ongoing
 - RF Power amplifiers and couplers will be in place
 - MEBT hardware to characterize RFQ being prepared
 - working with available funding to keep these on schedule
- Long Term Goals
 - 2016: Beam delivered to the end of MEBT with nearly final parameters (2.1 MeV, 1 mA CW, 80% arbitrary chopping)
 - 2018: 1-mA CW beam 25 MeV beam delivered to the dump