UV Laser Ionization of Liquid Argon TPCs

Gus Sinnis Los Alamos National Laboratory

Need for a Laser Calibration System

- Measure the electric field in situ
 - "As Built" TPC field may differ from design
 - Possible changes over time
- Measure electron lifetime in situ
 - LAr may not be completely mixed
- Redundant, well understood system (crosscheck muons)

Laser Ionization of Liquid Argon

3

- First demonstrated by Sun et al. 1996 NIM A v370 p372
- Binding energy of LAr 13.78 eV
- Quadrupled Nd-YAG, 266 nm or 4.66 eV
 - requires 3 photons (13.98 eV) to ionize
- Quadratic dependence of ionization yield to laser power
 - Indicates presence of intermediate state

Laser Ionization of LAr

- U. Bern group has done most of the recent work
 - Rossi, et al., 2009, JINST, v4 p07011
 - Badhrees, et al. arXiv:1011.6001
 - Rossi, et al., 2011, J. of Phys. Conf. Ser. v308, p012025

Laser Ionization System for LBNE

- Considerations
 - Size of detector Rayleigh scattering length ~18.6m at 266nm (minimize beam path)
 - Beam access to liquid (minimize losses)
 - Ability to access any location in liquid volume
 - Modularity (independent optical elements)
 - Safety systems (enclosed beams were possible)
 - Impact on photon detection system (TPB sensitive to UV light)
- Requirements
 - Pointing accuracy < wire spacing over 20m (0.1 mrad)
 - Small beam divergence (ability to ionize liquid ~30m from source)
- Prototype in CAPTAIN (and Mini-CAPTAIN)

Mini-CAPTAIN

- Simple design
- Limited flexibility
- Fixed mirrors
- Azimuthal rotation through small range

	Quantel "Brilliar	nt B" Nd-YAG la	<u>ser</u>	Ť	Optical
Pulse Energy	850 ml	400 ml	90 ml		feedthrough
Pulse Duration	6 ns	4.3 ns	3 ns		
Peak Power	133 MW	87 MW	28 MW		
Peak Intensity	1500 GW/cm^2	985 GW/cm^2	317 GW/cm^2		
Photon Energy	1.17 eV	2.33 eV	4.66 eV		
Photon Flux	8E30 γ/(s·cm^2)	2.6E30 γ/(s·cm^2)	0.42E30 γ/(s·cm^2)		
	tiant b anot		200 400		

Laser Alignment

8

CAPTAIN Collaboration Meeting, Santa Fe NM July 2014

Mini-CAPTAIN Nitrogen Fill Test of alignment procedure

Fermilab Liquid Argon Workshop, July 2014

CAPTAIN Laser System

- Need to prototype LBNE system on a small scale
 - Validate optical feedthrough
 - Validate rotary control and encoder systems
 - Test calibration concepts
 - Understand potential damage to TPC
 - Calibration of pointing accuracy
- CAPTAIN is an ideal testbed for new ideas

Preliminary Design of Optical Feedthrough

CAPTAIN Feedthrough Detail

Control and Readout

- Renishaw absolute encoder for azimuthal control
 - I arc-second accuracy

- Newport picomotor and linear encoder for zenith control
 - 0.5" travel gives 90° zenith freedom
 - <30 nm incremental motion</p>

Conclusions

- Laser ionization provides a controllable and understood ionization track to monitor the performance of a LAr TPC
 - Calibrate Mini-CAPTAIN and CAPTAIN
 - Prototype for LBNE(F)
- Further work
 - Mini-CAPTAIN LAr run August
 - Complete design of CAPTAIN optical feedthrough
 - Larger-scale prototype
- With CAPTAIN we can work these issues and discover any new issues that LBNE will need to resolve (stability of long 3m feedthrough, verification of pointing accuracy, etc.)