LArTPC Signal Processing

Bruce Baller - Fermilab July 8, 2014 LArTPC R&D Workshop 2014

Outline

- Liquid state signal generation
 - o Ionization
 - Thermalization
 - Recombination
 - Electron attachment & diffusion
- Signal generation in wire planes
 - Field response
 - o Electronics response
- Convolution and deconvolution
- Closing comments

Ionization Nano-Physics in LAr

 $r_{ion-electron} \sim 0.5 \text{ nm with } E_{electron} \sim 5 \text{ eV}$

 $r_{ion} = 23.6 \text{ eV} / (dE/dx)$

MIP dE/dx = 2.1 MeV/cm \rightarrow r_{ion} ~ 100 nm HIP dE/dx ~ 25 MeV/cm \rightarrow r_{ion} ~ 10 nm

Ref: LAr atomic spacing ~ 0.4 nm (= 4 Å)

After Thermalization

Jaskolski, Wojcik J. Phys. Chem. A 115 (2011) 4317 Sowada, Phys. Rev. B 25 (1982) 3434

LArTPC R&D

Recombination Theories

2. Zur Theorie der Ionisation in Kolonnen; von George Jaffé.

Leipzig, im Mai 1913.

(Eingegangen 30. Mai 1913.)

(32')
$$Y_3(X) = \frac{1}{1 + \frac{\alpha N_0}{8 \pi D} \sqrt{\frac{\pi}{x'}} S(x')}, \quad z' = \frac{b^2 u^2 X^2 \sin^2 \varphi}{2 D^2}}{Birks model (1951)}$$

 $Y_3(X)$ = recombination factor \mathcal{R}

 \rightarrow fraction of electrons that escape vs E field strength X

<u>Assumptions</u> Recombination ~ charge density

No Coulomb interactions

Ion mobility = electron mobility

Electrons & ions have the same Gaussian distribution

LArTPC R&D

Recombination in Practice

Less charge = more scintillation light

LArTPC R&D

Craig Thorn, "Properties of LAr v9a", MicroBooNE doc #412, LBNE doc #4482

Electron Attachment & Diffusion

 Q_0 = electron charge after recombination Q = charge arriving at the wire planes

"drift electron lifetime"

 $\tau_{electron} = 1/$ (Rate Constant x concentration)

 $Q = Q_o \exp(-t_{drift} / \tau_{electron})$

LArTPC R&D

Craig Thorn, "Properties of LAr v9a", MicroBooNE doc #412, LBNE doc #4482

•8

Electron Transport in Wire Planes

Electron Transport in Wire Planes

Set E field ratio ~ 1.5

Electron Transport in Wire Planes

LArTPC R&D

•11

Field Response

LArTPC R&D

Electronics Response

Using BNL – Nevis electronics chain

Signal Processing Chain

Time spread, comments

Convolution and Deconvolution

Convolution

Signal = Ionization \otimes diffusion \otimes field \otimes electronics

De-convolution & Filter

Ionization \otimes diffusion = \mathcal{F}^1 { Filter * $\mathcal{F}(Signal) / \mathcal{K}$ }

Filter protects when $\mathcal{K} \rightarrow 0$ or to remove coherent noise

Generalization

Cons

Developing convolution kernels and filters takes special effort Computational cost

Closing Comments

- In-liquid signal formation well understood
 - Charge loss due to recombination and electron attachment are not...
- Complex field response in the wire planes
 - Motivates setting electronics shaping time >~ field response time spread
- BNL ASIC designed for LArTPCs
 - Programmable gain and shaping time
 - Peak amplitude independent of the shaping time
 - Charge injection calibration

Deconvolute signals?

- Bipolar induction plane signals \rightarrow unipolar collection plane signals
 - Common hit finding and hit reconstruction code
- Convert to a "standard" shape, e.g. Gaussian
- No obvious benefit for collection plane signals for long shaping times
- Remove coherent noise using a notch filter
- Computational and human cost of developing kernels & filters