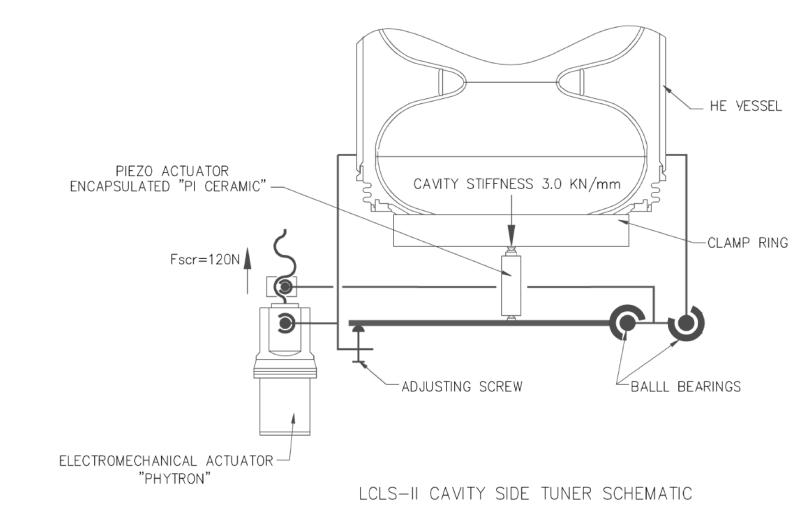
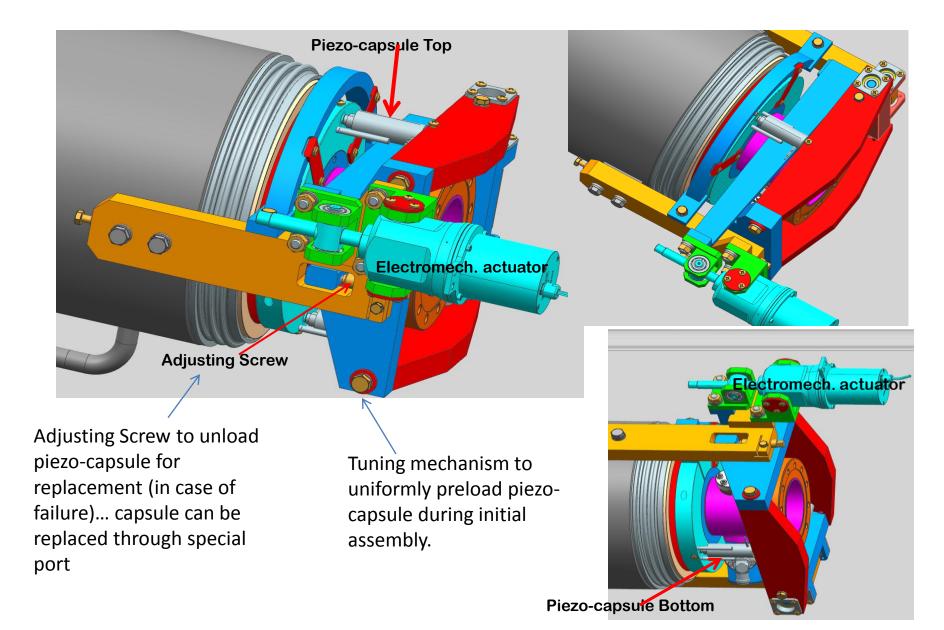
LCLS II Cavity Tuner

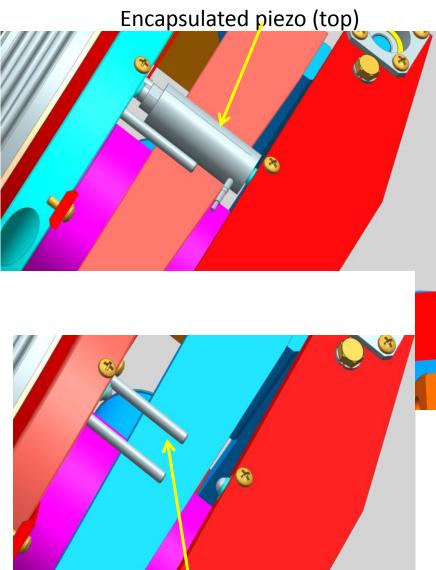
E. Borissov, I. Gonin, Y. Pischalnikov, W. Schappert


Presented by Yuriy Pischanikov at LCLS II Dressed Cavity Review April 15, 2014

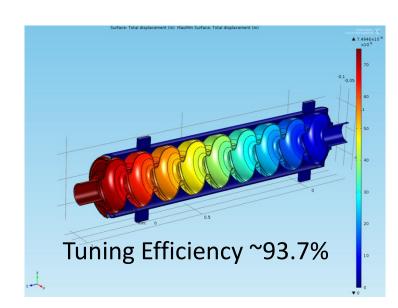
Tuner Functional/ Technical Requirements Specs

Parameters	Value
Cavity Frequency	1.3GHz
Cavity bandwidth	30Hz
Cavity elongation tuning	340Hz/um
Cavity Spring Constant	3N/um
Slow Tuner cavity freq. range	250kHz
Slow Tuner dimentional range	740um
Slow/Coarse tuning resolution	20Hz
Fast Tuner cavity freq. range	1KHz
Fast Tuner dimentional range	3um
Fast Tuner tuning resolution	1Hz
Fast Tuner stroke resolution	3nm
Fast Tuner response bandwidth	5kHz
Min. tuner stiffness	30N/um
Min. tuner mechanical resonance	5kHz
Tuner operating condition	insulated vacuum T=20-60K
Slow Tuner / electromechanical lifetime (20years)	1000 spindle rotation
Fast/piezo Tuner lifetime range	5*10 ⁹ pulses


LCLS II Tuner Schematics


- Slow/Coarse Tuner is double lever tuner (close to design of the SACLAY 1)
- Coarse Tuner ration 1/20 (Saclay 1 ~ 1/17)
- Fast Tuner two piezo installed close to flange of cavity /translation of the stroke from piezo directly to the cavity

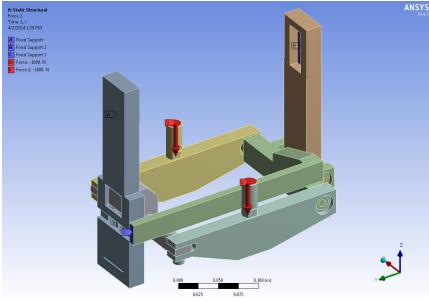
LCLS II Tuner


• Electromechanical actuator & piezo can to be replaced through special port

Details of Fast Tuner design

Horizontal support rods – to help replace piezo capsule through special port

<figure>


Tuner Simulation (by Ivan Gonin)

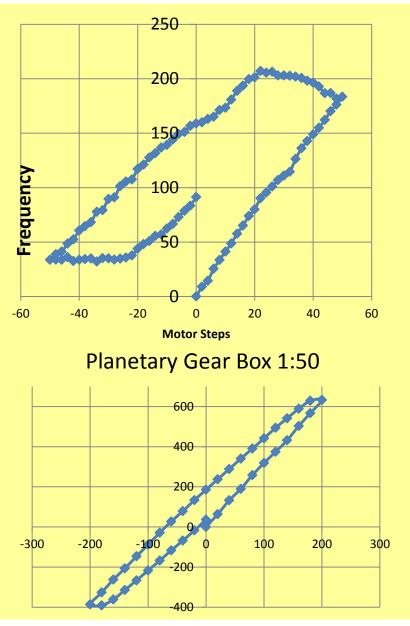
9-CELL CAVITY+HV+Conical Flange +Bellows

<u>E=293K/2K</u>, t=2.8mm, F=3200N, ΔL~0.750/0.669mm

<u>K~4260/4780 N/mm</u>

SIMPLIFIED MODEL OF LEVER TUNER

Geometry (Print Preview) Report Preview


Geometry (Print Preview) Report Preview /

Electromechanical Actuator (for coarse tuning)

Picture	Name	Motor	Gear Box	Spindle&Nut	Forces (freq. range with assumption 3N/um (not 4.7N/um)	Longevity
	LCLS II (DESY)	Phytron 1.2A	planetary gear (ration 1:50)	Stainless Steel M12*1	120N <i>(250kHz)</i>	tested in vacuum at 77Kfor 6500 turns (<u>6,5XFEL lifetimes</u>) current go from 0.2A to 0.7A
	PIP II (fnal)	Phytron 1.2A	planetary gear (ration 1:50)	Titanium M12*1	+/- 1300N <i>(2,5MHz)</i>	tested in ins. vacuum at HTS for 5000 turns (<u>5 XFEL lifetimes).</u> In the force range +/- 1500N. Motor run with current 0.7A
	XFEL	Sanyo	Harmonics Drive (ration 1:100)	CuBe (safety issues) M12*1	?N <i>(200kHz</i>)	tested in insulated vacuum at HTS for 3000 turns (<u>3 XFEL</u> <u>lifetimes</u>).

LCLSII actuator best choice. PIP II actuator is choice #2... XFEL is choice #3. For first 2 cryomodule Phytron is ready to supply LCLS II or PIP II (16-20 units). Can we have XFEL actuator for independent tests????

Slow (coarse) Tuner Hysteresis FNAL's CM2 Blade Tuner (tested at HTS)




Harmonics Drive Gear Box with 1:100

FAST (piezo) Tuner (4 piezo – 2 run + 2 spare) 2 at the Top and 2 at the Bottom

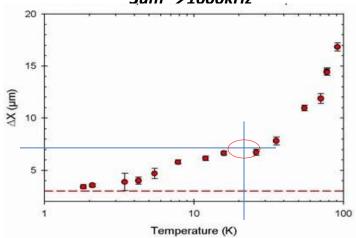

PI Ceramics encapsulated preloaded piezo As a basis for LCLS II fast tuner Required small modifications of the body.

Table #1.	Technical characteristics for P-888.50 at Room Temperatu	ire
-----------	--	-----

Dimensions A*B*L (mm)	Nominal Travel Range (0-100V)	Max. displacement (0-120V)	Blocking Forces	Stiffness	Electrical capacitance	Resonance Frequency
mm*mm*mm	um	um	N	N/uF	uF	kHz
10*10*18	16	18	3600	200	6.0	70

Stroke from one piezo (L=18mm) at 20K \sim 3um \rightarrow 1000kHz

Forces on piezos from Tuning Cavity 250kHz → 2.5kN → 1.2kN (per piezo or 30% of blocking forces) Optimal piezo preload ~ 50% of blocking → 1800N

<u>PI Ceramics</u> agreed to make modification of "standard" capsule according our specs; install two separate piezo inside capsule; adjust preloading to our specs (correct preload at 20K)

Summary

- FNAL finalized design of Tuner for LCLS II (as a basis used SACLAY I design)
 - Special attention paid to reliability of electromechanical actuator and piezo tuner
 - Fast tuner will have 4 piezo (2*2) to increase reliability (even one piezo will be able to tune for 500Hz)
 - *Cost effective design/selection of the components*
 - Negotiation with PI Ceramic; Noliac; PiezoMechanics
 - Negotiation with Phytron
 - Communication with DESY exploring XFEL solutions
 - Piezo translate stroke directly to flange of the cavity (SSR1 experience) / to achieve sub-nm stroke → ~1Hz cavity tuning sensitivity

Summary II

- Components reliability testing program start at FNAL
 - Piezo Reliability at cold environment (HTS; IB1-VTS; VMTF; Stand3)
 - Piezo Radiation hardness study
 - Stepper motor/gear/spindle tests at cold-insulated vacuum environment
- Tuner prototype testing program
 - First prototype test in August-September at HTS

• Tuner QA program

Additional Slides

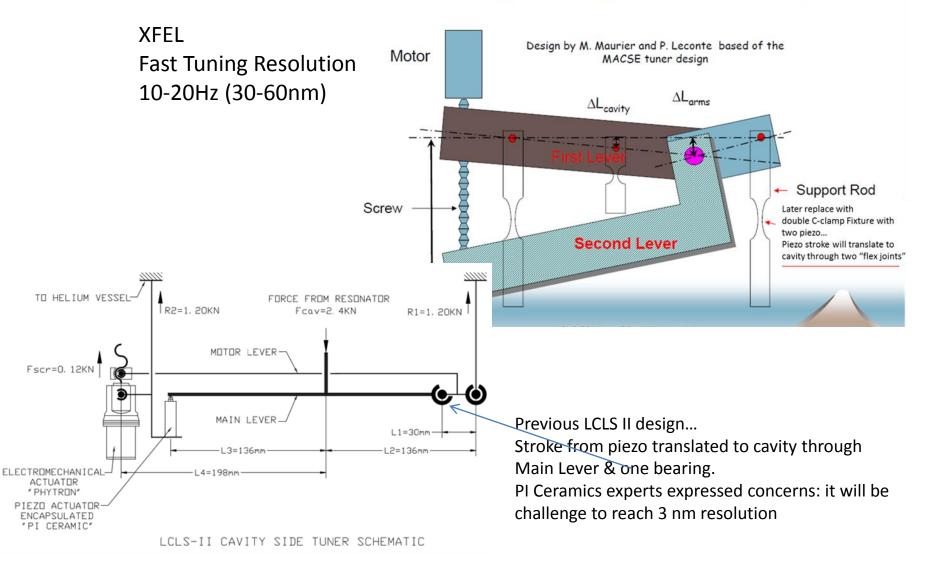
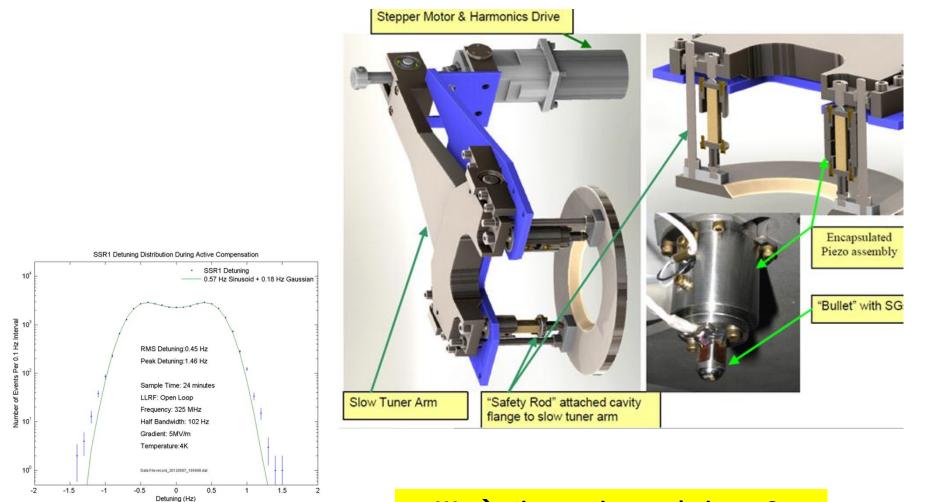
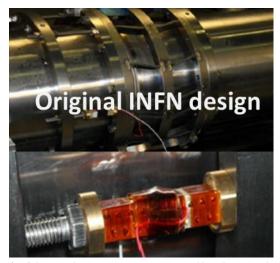

CM2 HTS

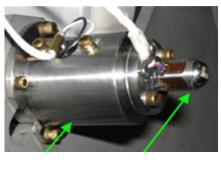
Table 1: Summary of cavity/tuner measured performance parameters


Cavity ID #	Frequency before tuner installation(MHz) 1bar, 300K	Frequency after cool-down (MHz) He -23torr, 2K	Slow Tuner slope (kHz/turn)	Piezo-to-Cavity Sensitivity, Hz/V	Dynamic LFD Hz/s/(MV/m) ²
ACC013	1297.385	1299.900	26.5	7.2	-970
AES009	1297.388	1299.813	31.2	<mark>2.7</mark>	-1240
ACCEL8	1297.321	1299.750	-	6.5	-860
AES010	1297.200	1299.793	27.9	8.5	-950
AES008	1297.175	1299.735	26.5	7.3	-1600
ACC016	1297.415	1299.899	28.1	10.5	-880
RI029	1297.106	1299.757	-	14	-650
AES007	1297.338	1299.791	26.3	10.4	-740
RI018	1297.417	1299.882	27.9	13	-740
Average	1297.336	1299.813	27.8	9.7	-960
σ	0.116	0.065	1.7	2.8	295

Issue of translation of the sub-nm stroke from piezo to cavity (flex joint vs translation through bearing)


Saclay -1 : Operation Principle

Issue of translation of the sub-nm stroke from piezo to cavity (direct translation – SSR1 Experience)



 σ =1Hz \rightarrow piezo tuning resolution ~ 2nm

Shearing Forces & piezo tuner longevity (CM2 & S1 Global experience)

325MHz (Spoke Cavity) Fast Tuner

