
Software Build Orchestration
with Worch

Brett Viren
Physics Department

FIFE Workshop, June 2014

https://indico.fnal.gov/conferenceDisplay.py?confId=8406


Outline

Overview of worch

Using Worch for Release Management

Summary

Brett Viren (BNL) Worch June 16, 2014 2 / 17



Overview of worch

worch = waf + orchestration
A system for “orchestrating” installation of software suites. 3 parts:

waf: A cross-platform, Python program that executes
commands satisfying expressed dependencies.
Think “make” but with a real programming language.

tools: Worch extends waf with Python code interpreting the
config to exercises common native package build
systems. Users may provide their own tool extensions.

config: Worch adds a purely declarative configuration language
to describe the tasks to be performed, assert file system
layout and build policies, and package versions.

Python

waf

worch

configuration

tools/features

native build tools

operating system

Brett Viren (BNL) Worch June 16, 2014 3 / 17



Overview of worch

waf in one slide
• Batteries included, Pure Python (supports: 2.4 – 3.4), single-file,

cross-platform, user-extensible executable.
• Built-in support for popular, compilers, toolkits and build methods.

(GCC/CLANG, TEX, Qt, Boost, SWIG, and more)
• High-performance, tested on large code bases, build profiling, unit

tests, build groups, fine-grained content-based dependencies.
• Full expressive power of Python (death to Makefiles!!!)

• But still fairly simple; eg, building this LATEXpresentation is essentially:

$ waf configure

$ waf

$ evince build/worch.pdf

def configure(cfg):
cfg.load("tex")

def build(bld):
bld(features = "tex", source = "worch.tex",

type = "pdflatex", outs = "pdf")

High-level waf “features” map to detailed Python code to generate
waf “tasks”, executed in parallel respecting any dependencies.

Brett Viren (BNL) Worch June 16, 2014 4 / 17



Overview of worch

worch Layers
• waf is low-level and fully general
• worch is a vehicle for specific policies/conventions

• “batteries included” tools/features tend to impose policies
• file-system conventions mostly exposed to configuration layer

Examples of existing policies and conventions:
FNAL/UPS build of LArSoft producing “Fermilab standard” UPS

products area. Makes use of Fermilab build scripts (Lynn
Garren).

UPS-free build of art using new, low-level CMake build for art-like
packages. Can still result in “Fermilab standard” UPS
products (Ben Morgan, in development)

EM Environment Modules managed binaries, g4lbne (bv)
Nox A Nix-like code aggregation system providing file-system

instead of environment variable. based package
aggregation (bv, experimental).

Multiple policies/conventions may overlap in the same products area

Brett Viren (BNL) Worch June 16, 2014 5 / 17

http://modules.sf.net/
https://github.com/brettviren/nox
https://nixos.org/nix/


Overview of worch

Procedural Configuration Considered Harmful
Or, don’t hand a baby a katana

waf is very well designed, layered, extensible, etc, but:
• Python is exceedingly powerful for a configuration language.
• All the more power to get one into deep trouble.
• You’ve seen crazy Makefiles,
→ Now, imagine their authors high on Python.

=⇒ worch puts a layer of simple, purely-declarative configuration
language on top of Python’s power.
• hide the power, but still allow for it when needed
• abstract out common patterns and parameterize them

• provide reasonable, overridable default parameters

This results in a simple, high-level description of all details related to
building the software suite.

Brett Viren (BNL) Worch June 16, 2014 6 / 17

http://en.wikipedia.org/wiki/Considered_harmful


Overview of worch

Worch Configuration Language

basic syntax text-based schema, named sections of key/value pairs
(a.k.a. “INI”, a.k.a. Python ConfigParser)

extensions hierarchical data representation, variable expansion with
inter-section reference and file inclusion

conventions “groups” of “packages” defining parameters for waf
“features” that define waf “steps”.

Configuration allows:
• defining software suite packages and their versions
• determine per-package installation procedures to apply
→ and their detailed parameters

• asserting layout policies for intermediate and final files

Still exposes a lot of power. There is no magic and configuration authors
still have to think.

Brett Viren (BNL) Worch June 16, 2014 7 / 17



Overview of worch

Get a Flavor for a Worch Config File
Fake snippet showing some features of the configuration language:

[start]
groups = buildtools, gnuprograms, mystuff
features = tarball, autoconf, makemake
install_dir = {PREFIX}/{package}/{version}

[group gnuprograms]
packages = hello
source_url = http://ftp.gnu.org/gnu/{package}/{source_package}

[package hello]
version = 2.8
features = tarball, patch, autoconf, makemake

[package myapp]
version = 1.0
features = tarball, cmake, makemake

Default {variables} can be set generally and overridden locally.
Config groups translate to atomic groups of waf tasks.

Brett Viren (BNL) Worch June 16, 2014 8 / 17



Overview of worch

Waf “Features”
A waf-technical term: features.
• Named chunks of parameterized Python code that generate waf

tasks to do something.
• Features tend to be written to work in concert.

• Tasks are linked by the files the produce/consume.
• Worch features follow naming convention:

download, unpack, prepare, patch, build, install

• waf comes with low-level features such as those that produce
C/C++/FOTRAN compiler tasks.

• worch adds high level features:
tarball download and unpack a source tarfile

vcs same but from git/hg/svn/cvs
patch download and apply some patch to the source

autoconf configure source with GNU autoconf
cmake same but with CMake

makemake run make/make install

Brett Viren (BNL) Worch June 16, 2014 9 / 17



Overview of worch

Other worch additions

logging step-specific log file holding command line, working
directory, full environment, internal worch/waf state, and
stdout/stderr

fail script step failure generates a script to reproduce the failure with
CWD, ENV, and cmd line set.

controls each step produces a conventionally named file on
success: dependency linkage and forced-redo of a step.

fail early/often worch tasks are written to succeed or else fail
vociferously. Goal is to have no silent false-successes.

Brett Viren (BNL) Worch June 16, 2014 10 / 17



Overview of worch

Tools Provide Features

A waf-technical term: tools.

• Python modules following waf +worch conventions to define
features with access to full data structure from parsed
configuration files.

• Loaded via worch configuration file directives.
• Provides user-extension of waf/worch.
• Tool code may be stored with worch configuration files.
→ version control the two together, or
→ general purpose tools rolled back into worch for wider benefit

LBNE has special worch tools for building the LArSoft/art suite:
• via Fermilab scripts.
• via UPS-free CMake for art-type packages, (in development).

Brett Viren (BNL) Worch June 16, 2014 11 / 17



Overview of worch

Example Suite

1 cmake
2 gccxml
3 geant
4 geant3vmc
5 geant4vmc
6 ilcroot
7 pythia
8 python
9 root
10 vgm
11 xerces-c

Relatively small project. Figure shows build
steps and their dependencies.

Group1

cmake cmake files

gccxml gccxml files

Group2

python python files

ipython ipython files

pythia

pythia files

xerces-c xerces-c files

geant geant files

root root files

geant3vmc geant3vmc files

vgm vgm files

geant4vmc geant4vmc files

Group3

ilcroot ilcroot files

cmake_prepare tmp/builds/cmake-2.8.11-debug/cmake_install.cmake

cmake_unpack tmp/sources/cmake-2.8.11/bootstrap

cmake_install install/cmake/2.8.11/debug/bin/cmake

cmake_seturl tmp/urlfiles/cmake-2.8.11.url

cmake_download tmp/downloads/cmake-2.8.11.tar.gz

cmake_build tmp/builds/cmake-2.8.11-debug/bin/cmake

gccxml_download tmp/downloads/gccxml.git

gccxml_install install/gccxml/20130920/debug/bin/gccxml

root_prepare

gccxml_seturl tmp/urlfiles/gccxml-20130920.url

gccxml_build tmp/builds/gccxml-20130920-debug/bin/gccxml

gccxml_unpack tmp/sources/gccxml-20130920/README.rst

gccxml_prepare tmp/builds/gccxml-20130920-debug/CMakeCache.txt

python_download tmp/downloads/Python-2.7.5.tgz

python_install install/python/2.7.5/debug/bin/python

ipython_unpack

python_seturl tmp/urlfiles/python-2.7.5.url

python_unpack tmp/sources/Python-2.7.5/configure

python_prepare tmp/builds/python-2.7.5-debug/config.status

python_build tmp/builds/python-2.7.5-debug/python

ipython_prepare tmp/builds/ipython-1.1.0-debug/setup.py

ipython_install install/python/2.7.5/debug/bin/ipython

tmp/sources/ipython-1.1.0/setup.py

ipython_download tmp/downloads/ipython-1.1.0.tar.gz

ipython_seturl tmp/urlfiles/ipython-1.1.0.url

ipython_build tmp/builds/ipython-1.1.0-debug/build/lib/IPython/__init__.py

pythia_buildf2

tmp/builds/pythia-6-debug/tpythia6_called_from_cc.opythia_install

install/pythia/6/debug/lib/libPythia6.so

pythia_buildc1

tmp/builds/pythia-6-debug/main.o

pythia_build

tmp/builds/pythia-6-debug/libPythia6.so

pythia_prepare

tmp/builds/pythia-6-debug/tpythia6_called_from_cc.F

tmp/builds/pythia-6-debug/pythia6_common_address.c

tmp/builds/pythia-6-debug/pythia6416.f

pythia_download tmp/downloads/pythia6.tar.gz

pythia_genmain tmp/builds/pythia-6-debug/main.c

pythia_seturl tmp/urlfiles/pythia-6.url

pythia_buildf1

tmp/builds/pythia-6-debug/pythia6416.o

pythia_unpack tmp/sources/pythia6/pythia6416.f

pythia_buildc2

tmp/builds/pythia-6-debug/pythia6_common_address.o

xerces-c_build tmp/builds/xerces-c-3.1.1-debug/src/libxerces-c.la

xerces-c_prepare tmp/builds/xerces-c-3.1.1-debug/config.status

xerces-c_download tmp/downloads/xerces-c-3.1.1.tar.gz

xerces-c_install install/xerces-c/3.1.1/debug/lib/libxerces-c.la

geant_prepare

xerces-c_unpack tmp/sources/xerces-c-3.1.1/configure

xerces-c_seturl tmp/urlfiles/xerces-c-3.1.1.url

geant_download tmp/downloads/geant4.9.6.p01.tar.gz

geant_build tmp/builds/geant-4.9.6.p01-debug/outputs/library/Linux-g++/libG4track.so

geant_unpack tmp/sources/geant4.9.6.p01/CMakeLists.txt

geant_seturl tmp/urlfiles/geant-4.9.6.p01.url

geant_install install/geant/4.9.6.p01/debug/include/Geant4/G4Track.hh

vgm_prepare

geant4vmc_prepare

tmp/builds/geant-4.9.6.p01-debug/CMakeCache.txt

root_install install/root/5.34.05/debug/bin/root.exe

geant3vmc_prepare

tmp/builds/root-5.34.05-debug/CMakeCache.txt

root_download tmp/downloads/root_v5.34.05.source.tar.gz

root_build tmp/builds/root-5.34.05-debug/bin/root.exe

root_unpack tmp/sources/root/CMakeLists.txt

root_seturl tmp/urlfiles/root-5.34.05.url

geant3vmc_seturl tmp/urlfiles/geant3vmc-1.15a.url

geant3vmc_download tmp/downloads/geant321+_vmc.1.15a.tar.gz

geant3vmc_build tmp/builds/geant3vmc-1.15a-debug/build.done

geant3vmc_unpack tmp/sources/geant3/README

tmp/builds/geant3vmc-1.15a-debug/Makefile

geant3vmc_install install/geant3vmc/1.15a/debug/TGeant3/TGeant3.h

vgm_unpack tmp/sources/vgm-3.06/CMakeLists.txt

vgm_seturl tmp/urlfiles/vgm-3.06.url

tmp/builds/vgm-3.06-debug/CMakeCache.txt

vgm_build tmp/builds/vgm-3.06-debug/packages/RootGM/libRootGM.so

vgm_install install/vgm/3.06/debug/lib/libRootGM.so

geant4vmc_seturl tmp/urlfiles/geant4vmc-2.14a.url

geant4vmc_download tmp/downloads/geant4_vmc.2.14a.tar.gz

geant4vmc_build tmp/builds/geant4vmc-2.14a-debug/include/g4root

tmp/builds/geant4vmc-2.14a-debug/Makefile

geant4vmc_unpack tmp/sources/geant4_vmc/README

geant4vmc_install install/geant4vmc/2.14a/debug/include/g4root

ilcroot_download tmp/downloads/ilcroot.git

ilcroot_build tmp/builds/ilcroot-20130924-debug/include/IlcIonPDGCodes.h

ilcroot_prepare tmp/builds/ilcroot-20130924-debug/CMakeCache.txt

ilcroot_install install/ilcroot/20130924/debug/include/IlcIonPDGCodes.h

ilcroot_seturl tmp/urlfiles/ilcroot-20130924.url

ilcroot_unpack tmp/sources/ilcroot-20130924/CMakeLists.txt

Brett Viren (BNL) Worch June 16, 2014 12 / 17



Using Worch for Release Management

Software Suite Releases

Three ingredients:
1 worch config file captures:

• entire list of packages
• all their version strings
• complete build details

2 Keep worch config file + any custom waf tools in a repository.
3 Branch/tag this repository during release process.

• allows various release management schemes
• track source version and build version separately

→ One tag fully specifies the entire suite’s source and build.
→ Can be reproduced for anyone and for all time.

• (given source repositories, etc)

→ Lends itself to a high degree of automation.

Brett Viren (BNL) Worch June 16, 2014 13 / 17



Using Worch for Release Management

Example Software Suite Build

waf (+worch) is already highly automated:

$ git clone https://github.com/brettviren/worch.git
$ git clone http://myserver.com/myworchcfg.git
$ myworchcfg
$ git checkout my-release-tag
$ cd ../worch
$ waf --prefix=/path/to/install \

--orch-config=../myworchcfg/main.cfg \
configure build

That last waf command may take hours, depending on software suite
size and build environment power, but it runs with no human
intervention. At the end, the installation is ready to use.

Brett Viren (BNL) Worch June 16, 2014 14 / 17



Using Worch for Release Management

LBNE Release Automation
LBNE wraps the high-level commands from the previous slide to provide
simplification, automation and encapsulation:

$ wget https://cdcvs.fnal.gov/.../lbneinst
$ ./lbneinst "larsoft-1.00.02_build-1"

That’s a tag on the LBNE worch config repository:

larsoft-1.00.02 build-1

larsoft suite name
1.00.02 suite version
build-1 build number

• Complete specification, one command, fully automated install.
• Build number versions build configuration.

• bumped for bugs in build configuration
• adding new platforms to existing releases

Brett Viren (BNL) Worch June 16, 2014 15 / 17



Using Worch for Release Management

Role of worch in LBNE Continuous Integration

LBNE has active contributors to the CI group and are looking forward to
implementing CI client tests!
Planned build tests:

• worch-driven, green-field, full stack software builds triggered by
release tags on:
→ LBNE packages
→ larsoft
→ art

• incremental rebuilds of LBNE packages triggered by commits to
these packages.

• following some dwell period of no commits (eg, 1 hour)

We will explore populating local site installation areas, as a side effect,
with successful CI build results.

Brett Viren (BNL) Worch June 16, 2014 16 / 17



Summary

Summary

• waf provides a platform independent, highly capable build tool.
• worch builds on top of waf, more batteries and a simplified

configuration layer and provides a solid basis for release
management.

• worch is used by LBNE to automate building software from source
(so far, suites driven by LArSoft and g4lbne).

• I’m looking forward to seeing how worch can help a wider
community!

Links (clickable):
• worch GitHub and waf GoogleCode
• LBNE worch-based releases
→ so far just larsoft, development on hold for UPS-free CMake

• g4lbne install
→ worch-based, release-management in development

Brett Viren (BNL) Worch June 16, 2014 17 / 17

https://github.com/brettviren/worch
https://code.google.com/p/waf/
https://cdcvs.fnal.gov/redmine/projects/lbne-software/wiki/Software_Installation_From_Source
https://cdcvs.fnal.gov/redmine/projects/lbne-beamsim/wiki/Installation

	Overview of worch
	Using Worch for Release Management
	Summary

