A Passive Insertion as a Linearizer for ASTA?

Marco Venturini

LBNL

June 10, 2014 2nd ASTA User's Meeting, FERMILAB

Q: Why is a linearizer useful?

• A: to avoid development current spikes when compressing

RF waveform is the main cause of energy-chirp nonlinearity

Nonlinear momentum compaction in chicanes also contributes to nonlinearity

Various ways to linearize the longitudinal phase space

Harmonic cavities

- effective; method of choice in 4th generation light sources
- expensive, somewhat inefficient (beam is decelerated)

Nonlinear-optics elements in dispersive section

- pioneered at JLAB
- may spoil transverse emittance
- Longitudinal wake-field enhancing insertions

Recent experience with passive insertions

- Recent experiments in 2013
 - Dielectric lined tube (BNL*)
 - Corrugated metallic pipe (PAL*)
- Tested as "dechirpers' (affecting *linear* E/z correlation)

Mechanical support of 1m insertion (PAL)

Pipe corrugations:

Top view

Side view

- *S. Antipov, et al., PRL 112 114801 (2014)
- * P.Emma, et al., PRL 112 034802 (2014)

Time-resolved beam measurements at PAL-ITF

Voltage drop induced by corrugated-pipe insertion (rectangular aperture)

Wakefield dominated by single mode
$$W_Z(z) \sim \frac{Z_0 c \pi}{16a^2} \cos \frac{2\pi}{\lambda}$$

$$a = 3mm$$

$$p = 0.5mm$$

$$t = 0.3mm$$

$$h = 1.5mm$$

$$\lambda = 2\pi \sqrt{\frac{aht}{p}} = 10.3 mm$$

Q = 250pC

Could a passive insertion linearizer work for ASTA?

- Consider moderate charge bunches out of CAV2 (Q=250pC)
 - ASTRA simulations (P.Piot, et al.)
- Include 3 CMs (up to 600sMeV)
- LiTrack simulation

Injected beam (Q = 250pC)

ASTA: Compressing with 3.9GHz harmonic cavity

We are interested in moderate compressions to limit emittance growth

- We may want to compress even less
- Simulation does not include space charge

$$R_{56} = -19cm$$
$$V_{HL} = 6MV$$

Linearizer ON

Linearizer OFF

Replace harmonic cavity with corrugated 0.7m pipe

 $\langle E \rangle = 0.05132 \text{ GeV}, N = 0.156 \times 10^{10}$

Exit of Insertion

Exit of machine

Introducing a 2nd bunch compressor (at ~250MeV)

- As a way to increase compression, preserve beam quality
- Same 0.7m long passive insertion

Exit of BC1

Exit of machine

Perturbation to transverse dynamics

- Good control of beam needed to avoid dipole-like kicks
- Quad-wake (characteristic of rectangular aperture geometry) will cause projected emittance growth even if beam is well centered
 - Use a circular aperture insertion (at cost of tunability)?

Conclusions

- Linearization by passive insertion may work for ASTA.
 - Cheap!
- Not 'as clean' as linearization by harmonic cavities:
 - higher order-nonlinearities cause appearance of current spikes
 - It may be adequate for moderate compression
- Effects on transverse dynamic to be considered in a serious feasibility study
 - Include space charge
- To avoid quad-wake effects a circular aperture insertion may be used instead
 - at cost of tunability

Acknowledgments

 P.Piot for providing the macroparticle file off the ASTA injector