ASTA Linac Beamline configurations & capabilities

presented by P. Piot^{1,2}
based on work by C. Prokop¹, D. Mihalcea¹,
F. Lemery¹, J. Zhu², and collaborations with
B. E. Carlsten³.

¹ Northern Illinois University, ² Fermilab,

³ Los Alamos National Laboratory.

Credits: extensive use of beam-dynamics simulation codes provided by M. Borland (ANL), K. Flottmann, M Dohlus (DESY), J. Qiang and R. Ryne (LBNL)

Introduction

- Ultimately variable energy from ~50 (possibly lower) to ~800 MeV,
- High-repetition rate (1-ms rf pulse, 3 MHz rep rate):
 - Exploration of dynamical effects, e.g., in beam-driven acceleration methods.
- L-band (1.3-GHz) SCRF linac:
 - Well suited for mm/cmwavelengths beam-driven acceleration,
- Photoinjector source:
 - Provides low-emittance beam,
- Arbitrary emittance partition:
 - repartition of phase spaces to match final applications,
 - Tailored current profiles.

parameter	nominal value	range	units
energy exp. A1	50	[5,50]	MeV
energy exp. A2	$\sim 300 \text{ (stage 1)}$	[50,820]	MeV
bunch charge Q	3.2	[0.02,20]	nC
bunch frequency f_b	3	see $^{(a)}$	MHz
macropulse duration τ	1	≤ 1	${ m ms}$
macropulse frequency f_{mac}	5	[0.5, 1, 5]	Hz
num. bunch per macro. N_b	3000	[1,3000]	_

ASTA linac Overview (injector area)

DESY-type L-band RF gun

- Cs₂Te cathode driven by a Yb-fiber + Nd:YLF,
- two SCRF booster cavities (CAV1, 2),
- Round-to-flat beam transformer (RFTB),
- Bunch compressor (BC1) + diagnostic section,

vertical

- later stage: linearizer (CAV39),
- low energy user area. spectrometer < 50 E (MeV) diagnostics + CAV1 CAV2 RTFB BC1 matching in AC CAV39 ACC1 rf gun photoinjector manipulations P. Piot, ASTA 2nd users' meeting low-energy user area (A1)

Photoinjector capabilities (1)

nominal operating charge:

$$0.02 \le Q[\text{nC}] \le 3.2$$

- energy $\mathcal{E} \leq 50~\mathrm{MeV}$
- typical expected bunch parameters scaling over the nominal charge range (for 1 laser uv pulse):
 - transverse emittance [μm]:

$$\varepsilon_{\perp} \simeq 2.11 Q^{0.69}$$

longitudinal emittance [μm]

$$\varepsilon_{||} \simeq 30.05 Q^{0.84}$$

uncompressed rms bunch length [mm]

$$\sigma_{||} \simeq 2.18Q^{0.13}$$

[optimized with Astra (DESY) +
GeneticOptimizer by Borland/Shang APS/ANL]

Flat-beam generation (on-going work)

- beams with asymmetric transverse-emittance partition can be produced
- optimized flat beams have similar 4D emittance than round beams

parameter	flat-beam	round-beam	units
	configuration	configuration	
\overline{Q}	3.2	3.2	пC
E	47.18	48.77	MeV
$arepsilon_{m{x}}$	105.04	5.43	$\mu\mathrm{m}$
$arepsilon_{m{y}}$	0.31	5.44	$\mu\mathrm{m}$
$arepsilon_{4D}$	5.53	5.44	$\mu\mathrm{m}$
ρ	$\simeq 334$	≃ 1	

Low-energy bunch compression (1)

- Compression performed with a chicane-type bunch compressor (BC1)
- long. dispersion $R_{56} = -19 \text{ cm}$

single-particle-dynamics simulation of BC1

- BC1 comp. nominally limited by 2nd order nonlinearities
 - → CAV39 eventually needed

Low-energy bunch compression (2)

 overall performance of BC1 is be dominated by collective effects (LSC and CSR)

 lower charges result in higher transverse brightness

Compression of flat beams

 Compressed flat beams have applications to test asymmetric structure (DWFA, μ-undulator),

comprehensive beam dynamics study recently completed,

ASTA linac Overview (post ACC1 area)

- Acceleration to ~250-300 MeV in one 8-cavity cryomodule
- post cryomodule beamline:
 - transport beam to high-energy user areas + high-power dumps
 - injection in IOTA
- high-energy user area include several parallel beamline
- Further acceleration to ~800 MeV ("stage II")

post ACC1 beam optics

- Nominally designed to transport beam to HE dumps,
- possibility to transport 50 MeV + have other low-energy "insertable" experiment(s) located in transport line.

Conventional bunch-temporal shaping

Q = 3.2

before BC1

1.0

0.2

0.02 nC

Prokop,

- nominal bunch compression w.o. CAV39 leads to long tail (good for sampling wakes - see Lemery's talk),
- possibility to combine with dispersive scarping,
- use of CAV39 to impart controlled nonlinearities (later stage).

Generation of a witness population

 Witness bunch produced with a birefringent crystal

 Drive/witness hierarchy preserve downstream of BC1

Shaping experiment on-going laser pulse using ASTA laser and A0-HBESL beamline

θ

incoming uv

to cathode

δτ

α-BBO

EEX-based bunch temporal shaping

emittance exchanger (EEX)
 could be used to shape the
 bunch current profile (bunch
 train, ramped bunches, ...)

 need SC cavities to exploit multi-bunch capabilities

Ultra-low emittance low-charge beams

ransverse emittance (nm)

- small laser spot on photocathode or fieldemitter cathodes lead to extremely small emittances (sub-10-nm)
- produced beam are challenging to diagnose with **ASTA** nominal diagnostics
- Field-emission with gated cathodes could enable the production of low-charge bunches repeated at 1.3 GHz with 1 ms!

Summary

- ASTA will provide beams within a vast parameter space,
- Some of the advanced phase-space manipulations pioneered at Fermilab's A0 photoinjector are integral part of the design (flat beam) or will be installed early (EEX),
- Low-energy chicane-based bunch compression is not optimal but viable, at a later stage (after ACC1 installed), a second stage compressor might be added,
- Beam-dynamics performances of ASTA should be able to support most of the proposed experiments,
- We will be glad to collaborate and/or provide detailed calculations in support of your experiment [eventually all simulations files will be posted on ASTA web page so user can freely carry these calculations]