Electron beam measurements in the ASTA rf gun

G. Stancari, J.-P. Carneiro, D. Crawford, D. Edstrom, J. Ruan, A. Vivoli *Fermilab*

Experimental procedures
Models
Results

beam-based rf gradient calibration
beam energy calibration
emittance measurement
centroid motion

ASTA Users Meeting Fermilab, June 9, 2014

Apparatus

Solenoid scans: Method

1. Measure **beam spot** at YAG screen **vs. solenoid settings** at low charge (< 2 pC) with short pulses (4.5 ps) for different gradients and phases

2. Model linear transport in rf gun from cathode to screen

Matrix elements from

- integration of trajectories in time (Astra) or
- longitudinal slices (Gulliford/Bazarov, gs tramalargu code)
- 3. Find **best fit of model to measurements** to estimate: peak gradient, rf phase => final beam energy initial emittance

Giulio Stancari [Fermilab]

Solenoid scans: Data sets

Date	Cathode	Set gradient N:GRESPA [MV/m]	Set rf phase N:GRESPP (phys.) [deg]	Gun power N:GCVFP [MW]	Laser spot h, v [mm]	Number of bunches	Charge/bunch [pC]	Numer of data points
28 Jan 2014	Мо	25	-20 (+59?)	2.840	0.43, 0.58	100	0.10	16
29 Jan 2014	Мо	20	-20 (+59?)	2.217	0.43, 0.58	100	0.12	18
14 Feb 2014	Мо	25	192 (+65.5)	2.787	0.98, 2.2	100	0.19	10
14 Feb 2014	Мо	20	192 (+65.5)	2.173	0.98, 2.2	100	0.17	10
3 Apr 2014	Cs ₂ Te	26.6	187 (+60.5)	2.870	0.41, 0.76	100	0.81	32
4 Apr 2014	Cs ₂ Te	23	187 (+60.5)	2.472	0.42, 0.69	20	0.47	26
14 Apr 2014	Cs ₂ Te	45	200 (+61.5)	3.463	0.53, 0.67	250	2.3	23
14 Apr 2014	Cs ₂ Te	37	200 (+61.5)	2.299	0.57, 0.61	250	2.3	25

Example of phase scan (14 Apr 2014 at 45 MV/m)

Laser spots at virtual cathode

Giulio Stancari [Fermilab]

Example of electron beam on YAG screen vs. solenoid current

Rf gun model: field maps

Two models for particle transport in rf gun (no space charge)

1. Obtain transfer matrix *M* by **tracking** principal trajectories using the Astra code (*"time integration"* approach)

2. Calculate and multiply transfer matrices of small **slices in** *z* [according to Gulliford and Bazarov, PRSTAB **15**, 024002 (2012)] using new Fortran code (tramalargu) (*"space integration"* approach)

Why 2 models?

- to evaluate systematic uncertainties
- to set up Astra for later analyses with space charge

Comparison between models: longitudinal dynamics

Test case

40 MV/m, 1.3 GHz, 38.5 deg 0.13 T max. in solenoids 0.4 mm initial rms size 0.23 eV initial kinetic energy 0.19 um initial normalized rms emittance From cathode (z = 0 m) to YAG screen (z = 1.06 m)

Accuracy: 1 ps max. time step (Astra) 10⁻⁶ phase tolerance (tramalargu)

Comparison between models: transverse dynamics

Difference in beam envelope is less than 1 micron

Fitting model to data

Use **2 data sets** with different gradients, same phase, same laser spot size

Inputs: **initial spot size** (measured) and **initial kinetic energy** (almost irrelevant)

• Free parameters:

- 1. Gradient in first data set, E₁
- 2. Gradient in second data set, *E*₂
- 3. Rf phase of laser pulse, ϕ
- 4. Emittance (normalized rms), ε_0

▶ **Final kinetic energies** *T*¹ and *T*² **as derived quantities** from longitudinal calculation

Statistical **uncertainties** from bootstrap; systematic from different models

Giulio Stancari [Fermilab]

Parameter independence and model sensitivity

Changing the phase affects both data sets, but by different amounts

The emittance is determined by the depth of the dip

Data and model: solenoid scans of 28-29 Jan 2014

Data and model: solenoid scans of 28-29 Jan 2014

Data and model: solenoid scans of 14 Feb 2014

Data and model: solenoid scans of 14 Feb 2014

Data and model: solenoid scans of 3-4 Apr 2014

Data and model: solenoid scans of 3-4 Apr 2014

Data and model: solenoid scans of 14 Apr 2014

Data and model: solenoid scans of 14 Apr 2014

Summary of results

Data-set pair	Gun power 1 [MW]	Gun power 2 [MW]	Model	Gradient 1 [MV/m]	Gradient 2 [MV/m]	Phase [deg]	Emittance [um]	Energy 1 [MeV]	Energy 2 [MeV]
28-29 Jan	2.217	2.840	Astra	36.6 ± 1.1	42.4 ± 1.2	31.2 ± 3.2	0.464 ± 0.075	3.877 ± 0.099	4.48 ± 0.11
			tramalargu	36.79	42.87	29.6	0.459	3.89	4.52
14 Feb	2.173	2.787	Astra	33.97 ± 0.15	38.72 ± 0.21	52.6 ± 1.8	2.94 ± 0.26	3.474 ± 0.014	4.016 ± 0.024
			tramalargu	33.84	38.56	49.5	2.51	3.502	4.037
3-4 Apr	2.472	2.870	Astra	36.776 ± 0.072	39.51 ± 0.33	58.98 ± 0.68	0.571 ± 0.081	3.6821 ± 0.0072	3.994 ± 0.032
			tramalargu	36.402	38.85	54.7	0.524	3.7223	4.001
14 Apr	2.299	3.463	Astra	35.425 ± 0.046	43.216 ± 0.032	53.46 ± 0.67	0.5978 ± 0.0091	3.6295 ± 0.0061	4.512 ± 0.011
			tramalargu	35.343	43.262	51.37	0.5899	3.6507	4.545

First beam-based measurements of gradient, phase, and emittance at ASTA

Uncertainties are statistical

Estimate of systematic errors from difference between models

Giulio Stancari [Fermilab]

Results: calibration of rf gun gradient

Results: final electron beam energy

Deflection with trim dipoles

direct measurement
depends on final beam energy and fields in trim dipoles
[see D. Crawford's note]

Solenoid scan depends on dynamics in rf gun

Independent measurementsSystematic difference due in part to rf phase

Results: Emittance vs. laser spot size

Measurements close to expectedWider range of spot sizes will be explored

Beam-based alignment of laser, gun, and solenoids

A. Observe **centroid motion vs. rf phase** (solenoids off, low gradient): Relative alignment of cathode yield (laser, quantum efficiency) with gun fields

Transmission to YAG with solenoids off should be good
Need to boost ratio of signal (number of bunches) to dark current (low gradient) for experiments

B. Observe **centroid motion vs. solenoid current** Relative alignment of solenoid fields with gun axis

J.-P. Carneiro

Giulio Stancari [Fermilab]

Expected effect of phase scan on centroid with 0.5-mm x/y initial offset

Solenoids on

J.-P. Carneiro

Measured beam centroid motion vs. solenoid current

Giulio Stancari [Fermilab]

Conclusions

- Solenoid scans at low charge and short pulse length provide **tests of singleparticle dynamics in rf gun**
- ► Main purpose of this work was to get first estimates, set up procedure, and get input for machine commissioning
- Obtained first beam-based measurements of
 - ▶rf gun gradient
 - **rf phase** of laser pulse
 - electron beam emittance
- Final electron beam energy from independent measurements:
 - deflections with trim dipoles
 - solenoid scans
- Started beam-based alignment of electron emission, rf fields, and solenoids (measurements and simulations)

Thank you for your attention!