First Integrable Optics Experiment at IOTA

Sergey A. Antipov, The University of Chicago

Advisor: Sergei Nagaitsev

Motivation: Linear Dynamics

- Linear focusing lattice —
 betatron tunes of different particles are almost equal
 - Hamiltonian depends on time
 - Nonlinearities (both magnet imperfections and specially introduced) make single particle motion unstable due to resonances

• Stability depends on initial conditions

Phase space of 1D motion in linear lattice with 1 octupole nonlinearity

Motivation: Nonlinear Dynamics

- Tunes depend on amplitude
- Landau Damping increases with the spread of betatron oscillation frequencies. Larger tune spread —> beam more stable against collective instabilities.
 - Can created by adding octupole magnets
- If the system is integrable no resonances

• IOTA Goal: create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion.

Integrable Optics Test Accelerator

Danilov, Nagaitsev, Phys. Rev. ST Accel. Beams 13, 084002 (2010)

0.4
~ 0.1 mm
40 m
1.8 m
0.3

Need a Special Magnet

- Can we do anything with just conventional magnets?
 - Quadrupoles
 - Octupoles

Cross-section and field lines

$$U(x,y) = t \cdot \text{Re} \left[(x+iy)^2 + \frac{2}{3c^2} (x+iy)^4 + \frac{8}{15c^4} (x+iy)^6 + \frac{16}{35c^6} (x+iy)^8 + \dots \right]$$

Quasi-integrable optics

- Octupole magnet strength $\sim 1/\beta(s)^3$ $U(x_N, y_N; s) = \beta(s)V(x_N\sqrt{\beta_x(s)}, y_N\sqrt{\beta_y(s)}; s)$ $U = U(x_N, y_N)$
- Hamiltonian does not depend on s:

$$H = \frac{1}{2}(p_x^2 + p_y^2 + x_N^2 + y_N^2) + U(x_N, y_N)$$

- Questions:
 - What about the 3rd degree of freedom?
 - Imperfections
- 6D Simulations required

Beta-function in NL magnet section

18 10cm-long octupole magnets

Frequency Map Analysis

- Lifetrac code by D. Shatilov
 - 1) Tracking for $\sim 10^3$ - 10^4 turns
 - 2) FFT, find fundamental frequency
 - 3) Plot deviation

 No deviation – sufficient but not necessary condition for particle stability

- Model includes:
 - Dipoles
 - Dipole fringe fields
 - Quadrupoles
 - RF
 - No sextupoles

Frequency Map Analysis: 1 Section, Octupole Magnet

Tracking

Motion is bounded

Hamiltonian is conserved

Imperfections: stable region reduces insignificantly

No imperfections

Random error, $\sigma = 0.1$

FMA: 1 Section, Quadrupole + Octupole

06/09/14

Experimental Procedure

- Two kickers, horizontal and vertical, place particles at arbitrary points in phase space
- BPM measures beam position on every turn -> Poincare map: $\begin{pmatrix} x \\ y \end{pmatrix}_n$
- As electrons lose energy due to synchrotron radiation in $\sim 1 \text{sec}$ or 10^7 turns, they will cover all available phase space
- Do Fourier on $\sim 1 \text{ ms}$, 10^4 -turn-long samples -> betatron frequencies
- Repeat
- Study $Q_i(A_x, A_y)$ -> tune spread
- Final goal dependence of betatron frequency on amplitude

Two Kickers Create an Arbitrary Kick in 2D

- Horizontal + vertical stripline kickers
- Rectangular pulses up to 25 kV
 ~ 100 ns duration.
- Repetition rate < 1 Hz
- Adjustable voltage $0 V_{max}$
- Fit inside quadrupole magnets to save space

Voltage	± 25 kV
Radius:	
• Pipe	33 mm
• Plates	20 mm
Thickness:	
• Pipe:	2 mm
• Plates:	2 mm
Opening angle	70 deg
Edge rounding radius	3 mm
Edge rounding radius Wave impedance:	3 mm
	3 mm 50 Ohm
Wave impedance:	
Wave impedance: Odd mode	50 Ohm
Wave impedance: Odd mode Even mode	50 Ohm 55 Ohm
Wave impedance: Odd mode Even mode E-field in the center	50 Ohm 55 Ohm

Beam Position Can Be Measured Precisely

- 20 horizontal and vertical BPMs
 - Button type
 - 1 μm closed orbit resolution
 - 100 µm turn-by turn resolution
- 8 SR ports to measure beam size

PCB-Based Octupole Magnet V. Vorobiev, PARTI-2013

Sources of Error

- Beta functions: 0.01 (relative)
- Phase advance: 0.001
- BPMs: 0.1 mm
- Bunch transverse size: ~ 0.1 mm
- Bunch length: 2 cm
- FFT: $\Delta Q \sim 10^{-4}$
- Energy loss during 1 ms sampling window
- Errors in NL potential
- Overall: $\delta A \sim 0.1 \text{ mm}$, $\delta Q \sim 10^{-4}$

Summary

• It is possible to achieve tune spreads $\sim 10^{-2}$ with just conventional magnet components and still retain large dynamic aperture

Next Steps

- Search for optimal combination in terms of tune spread/size of dynamic aperture/complexity of the potential
- Compare with full nonlinear potential

Thank You for Your Attention