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** What are neural networks? &
X3
y
** When are they useful? X,
=  When there is a lot of available data
a neuron (node) a neural network

»  When system dynamics are
= not well-known, or change over time
= not captured sufficiently well by analytic models

= are very complicated/time-consuming to model analytically (but could be in principle)

=  When fast I-O is needed for a complicated model

** What are the disadvantages?
=  Poor generalization

=  Computationally intensive to train
= Long, iterative design procedure

=  Good design requires substantial expert knowledge
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Control Using Neural Networks

X/

+*  Two major classes of approaches
= NN model based

= Reinforcement learning/ adaptive critic

R/

*  Where are they being pursued?
= Lots of interest in industrial process control

Lots of academic papers on simple experiments, but still rarely used

R/

+* Major hurdles
= Achieving stability requires significant tradeoffs (and is usually not mathematically guaranteed)

= Adaptive NN-based control is computationally intensive

Often, the most appealing solutions rely on controls techniques that have not yet reached maturity
= Lack of prior track record on complicated systems

So, why bother?

—> Starting to look promising for improving the control of complicated MIMO processes

= Not a panacea, but very useful when applied intelligently
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Initial Studies at ASTA

% Start simple > NN temperature control of the RF gun
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+» Design training/validation/testing data

Number of Candidates Property

% Determine what input parameters to include
* putp 25 dead time
% Determine what preprocessing is needed
* o prep ) & 12 embedding
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+» Design training/validation/testing data

Number of Candidates Property

% Determine what input parameters to include
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% Determine what preprocessing is needed
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=  Standardization and scaling range (e.g.-1to 1, -0.5 t0 0.5)
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+» Determine which activation functions to use
. . . . . 10 alternate model inputs
+* Determine an appropriate sampling rate for the inputs

112 candidates x 15-fold validation
- 1680 NN to train

40 minutes to train (on average)
47 days

+* Find the appropriate lag space
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=  number of hidden layers

=  number of nodes in each layer

= jnterconnections between nodes
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Data Obtained for the Initial Model Design

«» ~24 hours of data total
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Data Obtained for the Initial Model Design

/7 R/ /7
0’0 0‘0 0’0

~24 hours of data total
~14 hours of pseudo-random input (without regulation)
~5 hours with changing RF power to the gun (with regulation) = cavity conditioning
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Data Obtained for the Initial Model Design

R/ /7
0‘0 0’0

/7
0’0

/
0’0

~24 hours of data total
~14 hours of pseudo-random input (without regulation)

~5 hours with changing RF power to the gun (with regulation) = cavity conditioning

The rest is steady-state regulation with existing controller

Value [°C, % open, gpm, kW]
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Closer View of Cavity Temperature

Cavity Temperature [°C ]
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Model Design: Input Parameter Selection

/
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*

Choose parameters which make sense a priori

** Get rid of redundant parameters
** Where uncertain, investigate candidate models with 15-fold validation
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Model Design: Input Parameter Selection
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Model Design: Input Parameter Selection

** Chosen Parameters
= Flow Control Valve Setting
= Heater Setting
= LCW Temperature
- Cavity Temperature

+* Other candidate models examined
= Adding return temperature as an input (with appropriate delay)
= Excluding previous cavity temperatures as an input
= Reducing the number of previous cavity temperatures used as input
- Did well, but not as well as the originally proposed model




Initial Training, Validation, and Testing Data

Training, Validation, and Testing Data
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Model Design: Variable Dead-Time Removal

Measurements supply a starting point - but the delays vary

Empirical study with NN gives an optimal solution

25 candidates
15-fold validation

Root Mean Squared Error [°C ]

Rough Search

53 T T T T T T T T T T T

985 ....... ....... ....... e ....... ....... ...... ....... ...... _
b ....... ....... ...... ....... . ...... ....... ]
9.75
- ...... _______ - ....... AU S
. ....... - ....... ....... ....... - ....... et

9.5—"'“‘5 ....... ....... ....... ...... ....... ....... ....... ...... ..... aioneet G ]

S I T T S TR S T T S R A

10 B W B 40 45
Time Removed [s]

9.75

9.73

9.71

9.639

9.67

9.65

9.63

9.61

9.59

9.57

9.55

-3 Refined Search

R S AT S S S S S
. : . : . : N . . : ®
R S R S R S O, e

. . : : : . . : . .
[ ] N . . : N s . :
. . : : : . : .
R P - S Heraed PPy NIRTONIRS PORAP SRR weraed Ty P R T -
[ ] ] : : . : . . ™
............................ G o i i e
. : : . * :
* : : ) . .
S AN SRS LY WS SRS S, i i
.
R RN, KEURUNL. RN PRU e SRNPRUOD: SNPTUI. NUPUPETO. SRR SOPUTRTRTEY: SSNUPRTE SRR SNSRIt USRS RIS .

55 56 57 58 59 60 61 62 63 64 65 66 67 B8 69 70

Time Removed [s]

ectri ( Y
@ENGINEERING




Model Design: Embedding Dimension

/

+* 12 candidates
+» 15-fold validation

Root Mean Squared Error [°C]

9.3
10 15 20 25 30 35 40 45 50 655 60 65
Number of Previous Time Steps Used as Inputs
(each time step is now 2 seconds)
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Number of Hidden Layers and Nodes

/

** 55 candidates for two-layer network

/7

*** 30 other candidates (not shown): recurrent, single-layer
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Performance Over Training and Validation Set

0.0094 RMSE validation set

outputs

435 F - .......... ......... .......... .......... .......... ...... targets . 0.0092 RMSE training set
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Testing Regions

*** Region 1: pseudo-random impulses

*** Region 2: steady-state with regulation

** Region 3: cavity conditioning, slow change in RF power
¢ Region 4: cavity conditioning, faster change in RF power




Performance in Testing Region 1

Cavity Temperature [°C]
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Performance in Testing Region 2

Cavity Temperature [°C]
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Testing Regions 3 and 4
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Performance on Testing Region 3
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Performance on Testing Region 4

Cavity Temperature [°C]
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Performance on Testing Region 4 with Adaptation

Cavity Temperature [°C ]
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What about large changes and different operating regimes?

+* Several options:

= Online adaptation
+* Slow and potentially unstable for large, rapid changes
+* Loss of previous learning

= Use RF power as an input and train across the operating regimes

** Would need a lot of data for many transition types = time intensive + likely not
feasible to capture adequately

X/

** Likely would need to a more cumbersome NN structure

= Train several NNs with data gathered in different operating regimes
¢ Can switch models in control routines
+ Can adapt online for small adjustments
** Many small models instead of one large, potentially problematic model
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Current and Next Steps

Fully characterize model performance under challenging conditions
= |f the model won’t perform well, a model-based controller certainly won’t
= Need to test in real-time while doing I-O though ACNET
= Need to test different updating schemes
= Need to test regime-switching schemes

Improve implementation of control script in Matlab
= Real-time execution of NN, I-O with ACNET, optimization procedure, data preprocessing
= Several computationally intensive processes

- tested ACNET and NN I-O previously with a very limited direct inverse controller, but this did not involve any
updating or optimization routines

Improve execution speed for Model Predictive Controller optimization
® |nstantaneous linearization
= Different algorithm

Simulations of controller performance
Test controller output only
Test controller operation in training regime



