

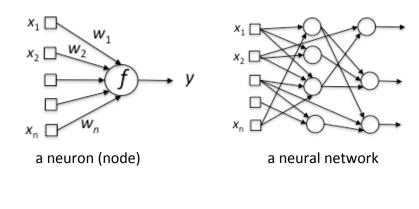
Machine Learning and Accelerators: Neural Network Based Modeling and Control at ASTA

Auralee L. Morin

2nd Annual ASTA Users Meeting 9-10 June, 2014

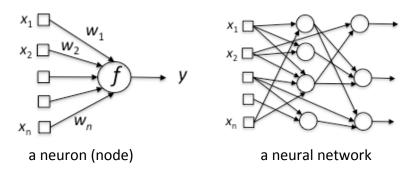
Nonlinear Modeling Using Neural Networks

What are neural networks?



Nonlinear Modeling Using Neural Networks

- What are neural networks?
- When are they useful?
 - When there is a lot of available data
 - When system dynamics are
 - not well-known, or change over time
 - not captured sufficiently well by analytic models
 - are very complicated/time-consuming to model analytically (but could be in principle)
 - When fast I-O is needed for a complicated model



Nonlinear Modeling Using Neural Networks

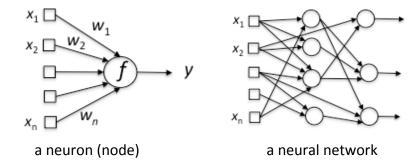
What are neural networks?

When are they useful?

- When there is a lot of available data
- When system dynamics are
 - not well-known, or change over time
 - not captured sufficiently well by analytic models
 - are very complicated/time-consuming to model analytically (but could be in principle)
- When fast I-O is needed for a complicated model

What are the disadvantages?

- Poor generalization
- Computationally intensive to train
- Long, iterative design procedure
- Good design requires substantial expert knowledge



- Two major classes of approaches
 - NN model based
 - Reinforcement learning/ adaptive critic

- ***** Two major classes of approaches
 - NN model based
 - Reinforcement learning/ adaptive critic
- Where are they being pursued?
 - Lots of interest in industrial process control
 - Lots of academic papers on simple experiments, but still rarely used

Two major classes of approaches

- NN model based
- Reinforcement learning/ adaptive critic

Where are they being pursued?

- Lots of interest in industrial process control
- Lots of academic papers on simple experiments, but still rarely used

Major hurdles

- Achieving stability requires significant tradeoffs (and is usually not mathematically guaranteed)
- Adaptive NN-based control is computationally intensive
- Often, the most appealing solutions rely on controls techniques that have not yet reached maturity
- Lack of prior track record on complicated systems

Two major classes of approaches

- NN model based
- Reinforcement learning/ adaptive critic

Where are they being pursued?

- Lots of interest in industrial process control
- Lots of academic papers on simple experiments, but still rarely used

Major hurdles

- Achieving stability requires significant tradeoffs (and is usually not mathematically guaranteed)
- Adaptive NN-based control is computationally intensive
- Often, the most appealing solutions rely on controls techniques that have not yet reached maturity
- Lack of prior track record on complicated systems

So, why bother?

Two major classes of approaches

- NN model based
- Reinforcement learning/ adaptive critic

Where are they being pursued?

- Lots of interest in industrial process control
- Lots of academic papers on simple experiments, but still rarely used

Major hurdles

- Achieving stability requires significant tradeoffs (and is usually not mathematically guaranteed)
- Adaptive NN-based control is computationally intensive
- Often, the most appealing solutions rely on controls techniques that have not yet reached maturity
- Lack of prior track record on complicated systems

So, why bother?

- → Starting to look promising for improving the control of complicated MIMO processes
- → Not a panacea, but very useful when applied intelligently

Initial Studies at ASTA

❖ Start simple → NN temperature control of the RF gun

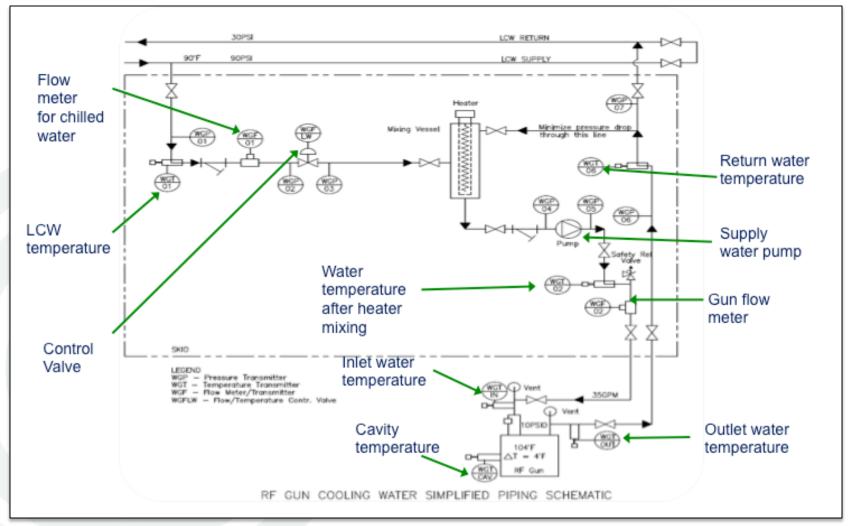


Figure courtesy P. Stabile

Design training/validation/testing data

- Design training/validation/testing data
- Determine what input parameters to include

- Design training/validation/testing data
- Determine what input parameters to include
- Determine what preprocessing is needed
 - Standardization and scaling range (e.g. -1 to 1, -0.5 to 0.5)
 - Dimensionality reduction (PCA, CCA), dead-time removal (if desired)

- Design training/validation/testing data
- Determine what input parameters to include
- Determine what preprocessing is needed
 - Standardization and scaling range (e.g. -1 to 1, -0.5 to 0.5)
 - Dimensionality reduction (PCA, CCA), dead-time removal (if desired)
- Determine which activation functions to use

- Design training/validation/testing data
- Determine what input parameters to include
- Determine what preprocessing is needed
 - Standardization and scaling range (e.g. -1 to 1, -0.5 to 0.5)
 - Dimensionality reduction (PCA, CCA), dead-time removal (if desired)
- Determine which activation functions to use
- Determine an appropriate sampling rate for the inputs

- Design training/validation/testing data
- Determine what input parameters to include
- Determine what preprocessing is needed
 - Standardization and scaling range (e.g. -1 to 1, -0.5 to 0.5)
 - Dimensionality reduction (PCA, CCA), dead-time removal (if desired)
- Determine which activation functions to use
- Determine an appropriate sampling rate for the inputs
- Find the appropriate lag space

- Design training/validation/testing data
- Determine what input parameters to include
- Determine what preprocessing is needed
 - Standardization and scaling range (e.g. -1 to 1, -0.5 to 0.5)
 - Dimensionality reduction (PCA, CCA), dead-time removal (if desired)
- Determine which activation functions to use
- Determine an appropriate sampling rate for the inputs
- Find the appropriate lag space
- Find an appropriate topology
 - number of hidden layers
 - number of nodes in each layer
 - interconnections between nodes

- Design training/validation/testing data
- Determine what input parameters to include
- Determine what preprocessing is needed
 - Standardization and scaling range (e.g. -1 to 1, -0.5 to 0.5)
 - Dimensionality reduction (PCA, CCA), dead-time removal (if desired)
- Determine which activation functions to use
- Determine an appropriate sampling rate for the inputs
- Find the appropriate lag space
- Find an appropriate topology
 - number of hidden layers
 - number of nodes in each layer
 - interconnections between nodes
- Determine which training algorithm to use (and parameters—objective function, learning rate, etc.)

- Design training/validation/testing data
- Determine what input parameters to include
- Determine what preprocessing is needed
 - Standardization and scaling range (e.g. -1 to 1, -0.5 to 0.5)
 - Dimensionality reduction (PCA, CCA), dead-time removal (if desired)
- Determine which activation functions to use
- Determine an appropriate sampling rate for the inputs
- Find the appropriate lag space
- Find an appropriate topology
 - number of hidden layers
 - number of nodes in each layer
 - interconnections between nodes
- **❖** Determine which training algorithm to use (and parameters—objective function, learning rate, etc.)
- Design an appropriate adaptation procedure, if applicable

- Design training/validation/testing data
- Determine what input parameters to include
- Determine what preprocessing is needed
 - Standardization and scaling range (e.g. -1 to 1, -0.5 to 0.5)
 - Dimensionality reduction (PCA, CCA), dead-time removal (if desired)
- Determine which activation functions to use
- Determine an appropriate sampling rate for the inputs
- Find the appropriate lag space
- Find an appropriate topology
 - number of hidden layers
 - number of nodes in each layer
 - interconnections between nodes
- **❖** Determine which training algorithm to use (and parameters—objective function, learning rate, etc.)
- Design an appropriate adaptation procedure, if applicable
- → 15-fold validation: especially important if re-training!

- Design training/validation/testing data
- Determine what input parameters to include
- Determine what preprocessing is needed
 - Standardization and scaling range (e.g. -1 to 1, -0.5 to 0.5)
 - Dimensionality reduction (PCA, CCA), dead-time removal (if desired)
- Determine which activation functions to use
- Determine an appropriate sampling rate for the inputs
- Find the appropriate lag space
- Find an appropriate topology
 - number of hidden layers
 - number of nodes in each layer
 - interconnections between nodes
- Determine which training algorithm to use (and parameters—objective function, learning rate, etc.)
- Design an appropriate adaptation procedure, if applicable
- → 15-fold validation: especially important if re-training!
- > For a NN model to be useful in control, also need to keep real-time implementation in mind
 - Speed of communication channels and actuators
 - Speed of adaptation procedures, speed of NN I-O processing
 - Data sampling rate vs. execution speed

- Design training/validation/testing data
- Determine what input parameters to include
- Determine what preprocessing is needed
 - Standardization and scaling range (e.g. -1 to 1, -0.5 to 0.5)
 - Dimensionality reduction (PCA, CCA), dead-time removal (if desired)
- Determine which activation functions to use
- Determine an appropriate sampling rate for the inputs
- Find the appropriate lag space
- Find an appropriate topology
 - number of hidden layers
 - number of nodes in each layer
 - interconnections between nodes

Number of Candidates	Property
25	dead time
12	embedding
55	hidden layers
10	sampling rate
10	alternate model inputs

112 candidates x 15-fold validation

→ 1680 NN to train

- Determine which training algorithm to use (and parameters—objective function, learning rate, etc.)
- Design an appropriate adaptation procedure, if applicable
- → 15-fold validation: especially important if re-training!
- > For a NN model to be useful in control, also need to keep real-time implementation in mind
 - Speed of communication channels and actuators
 - Speed of adaptation procedures, speed of NN I-O processing
 - Data sampling rate vs. execution speed

- Design training/validation/testing data
- Determine what input parameters to include
- Determine what preprocessing is needed
 - Standardization and scaling range (e.g. -1 to 1, -0.5 to 0.5)
 - Dimensionality reduction (PCA, CCA), dead-time removal (if desired)
- Determine which activation functions to use
- Determine an appropriate sampling rate for the inputs
- Find the appropriate lag space
- Find an appropriate topology
 - number of hidden layers
 - number of nodes in each layer
 - interconnections between nodes

Number of Candidates	Property
25	dead time
12	embedding
55	hidden layers
10	sampling rate
10	alternate model inputs

112 candidates x 15-fold validation

→ 1680 NN to train

40 minutes to train (on average)

- **❖** Determine which training algorithm to use (and parameters—objective function, learning rate, etc.)
- Design an appropriate adaptation procedure, if applicable
- → 15-fold validation: especially important if re-training!
- > For a NN model to be useful in control, also need to keep real-time implementation in mind
 - Speed of communication channels and actuators
 - Speed of adaptation procedures, speed of NN I-O processing
 - Data sampling rate vs. execution speed

- Design training/validation/testing data
- Determine what input parameters to include
- Determine what preprocessing is needed
 - Standardization and scaling range (e.g. -1 to 1, -0.5 to 0.5)
 - Dimensionality reduction (PCA, CCA), dead-time removal (if desired)
- Determine which activation functions to use
- Determine an appropriate sampling rate for the inputs
- Find the appropriate lag space
- Find an appropriate topology
 - number of hidden layers
 - number of nodes in each layer
 - interconnections between nodes

Number of Candidates	Property
25	dead time
12	embedding
55	hidden layers
10	sampling rate
10	alternate model inputs

112 candidates x 15-fold validation

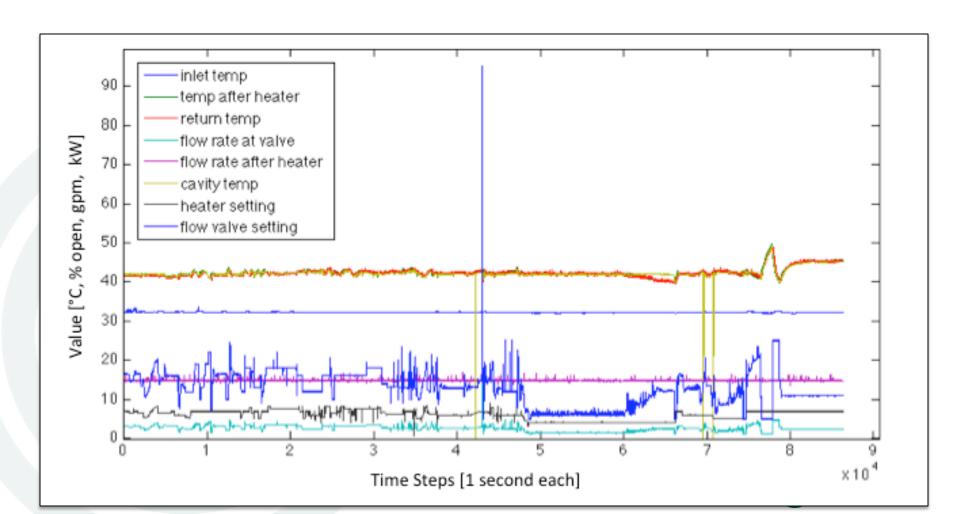
→ 1680 NN to train

40 minutes to train (on average)

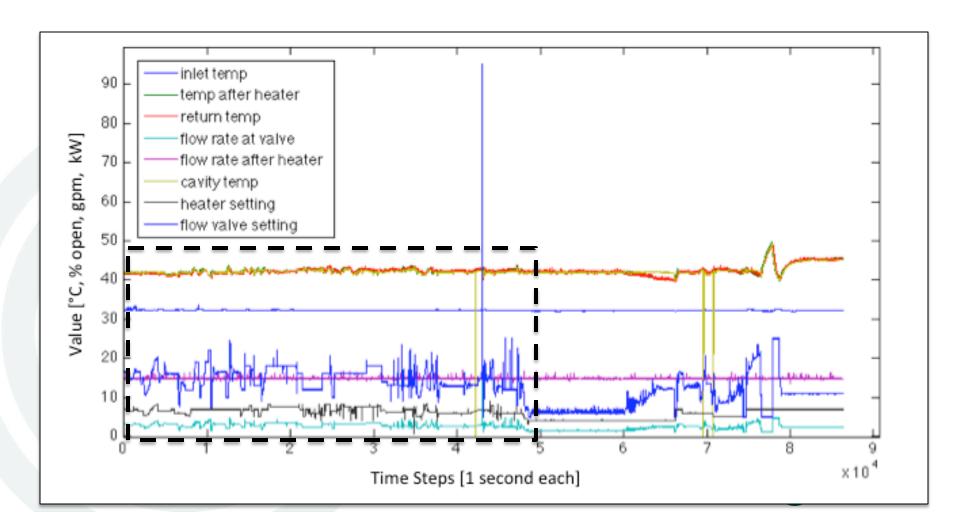
47 days

- Determine which training algorithm to use (and parameters—objective function, learning rate, etc.)
- Design an appropriate adaptation procedure, if applicable
- → 15-fold validation: especially important if re-training!
- > For a NN model to be useful in control, also need to keep real-time implementation in mind
 - Speed of communication channels and actuators
 - Speed of adaptation procedures, speed of NN I-O processing
 - Data sampling rate vs. execution speed

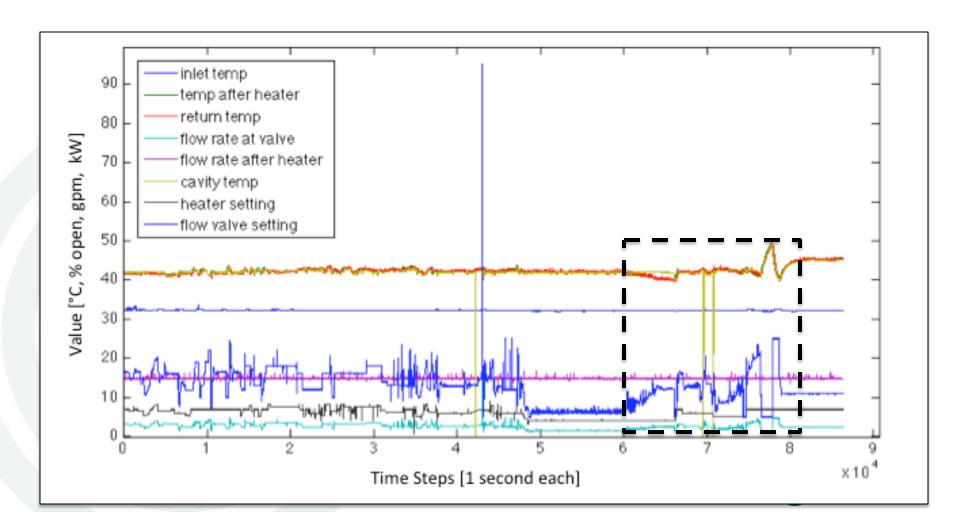
~24 hours of data total



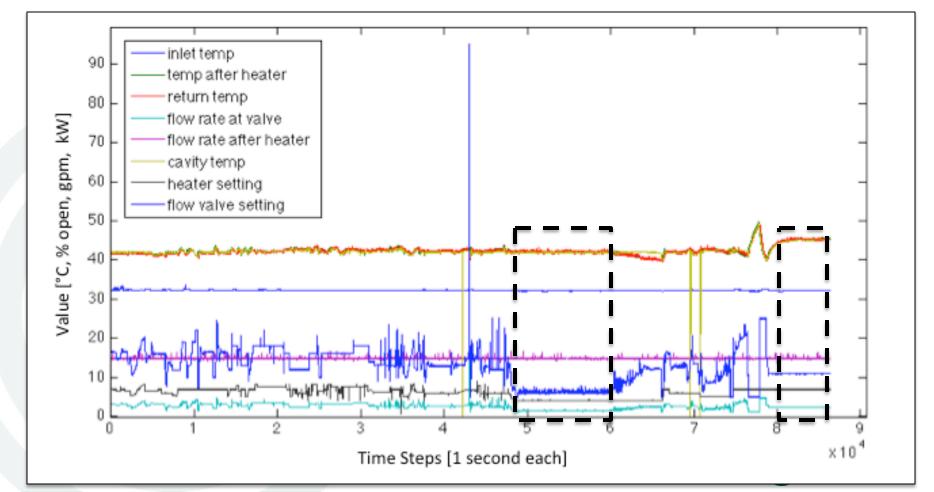
- ~24 hours of data total
- ~14 hours of pseudo-random input (without regulation)



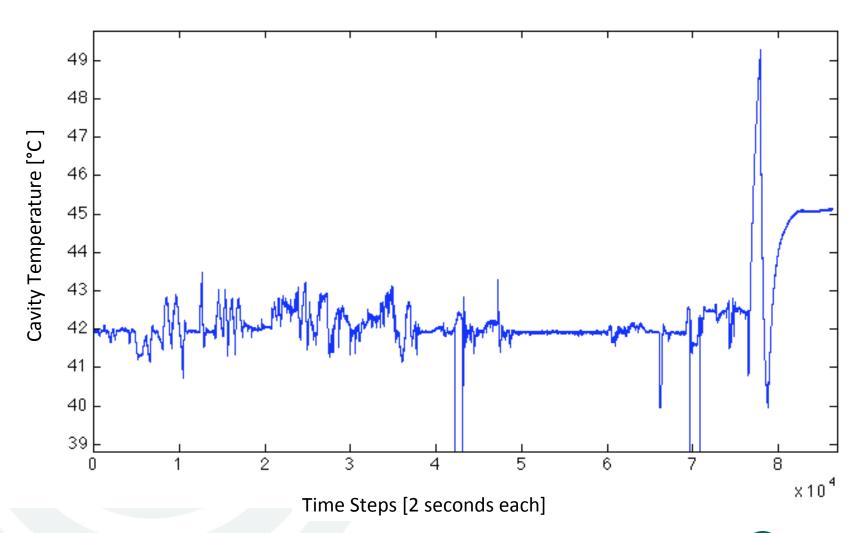
- ~24 hours of data total
- ~14 hours of pseudo-random input (without regulation)
- ❖ ~5 hours with changing RF power to the gun (with regulation) → cavity conditioning.



- ~24 hours of data total
- ~14 hours of pseudo-random input (without regulation)
- The rest is steady-state regulation with existing controller



Closer View of Cavity Temperature



- Choose parameters which make sense a priori
- Get rid of redundant parameters
- Where uncertain, investigate candidate models with 15-fold validation



Chosen Parameters

- Flow Control Valve Setting
- Heater Setting
- LCW Temperature
- → Cavity Temperature

Chosen Parameters

- Flow Control Valve Setting
- Heater Setting
- LCW Temperature
- → Cavity Temperature

Other candidate models examined

- Adding return temperature as an input (with appropriate delay)
- Excluding previous cavity temperatures as an input
- Reducing the number of previous cavity temperatures used as input

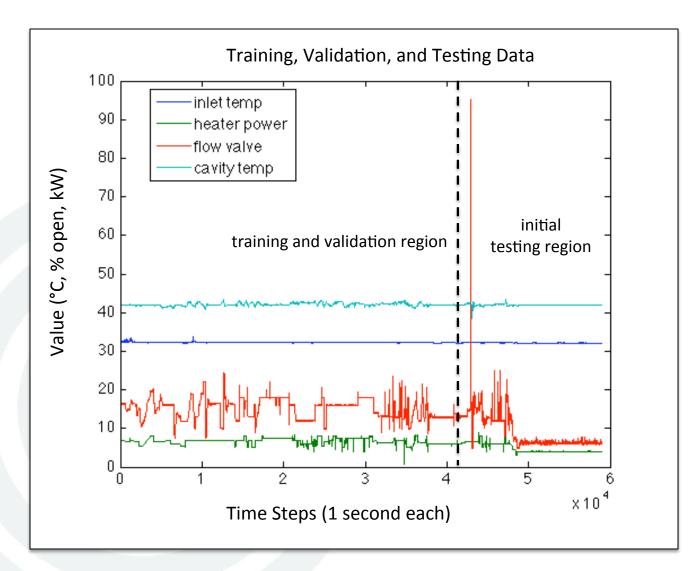
Chosen Parameters

- Flow Control Valve Setting
- Heater Setting
- LCW Temperature
- → Cavity Temperature

Other candidate models examined

- Adding return temperature as an input (with appropriate delay)
- Excluding previous cavity temperatures as an input
- Reducing the number of previous cavity temperatures used as input
- → Did well, but not as well as the originally proposed model

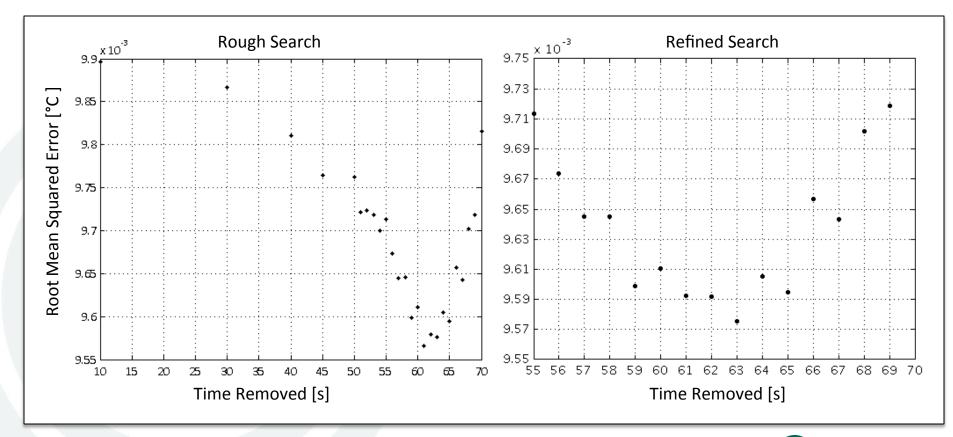
Initial Training, Validation, and Testing Data



With more challenging test data to follow

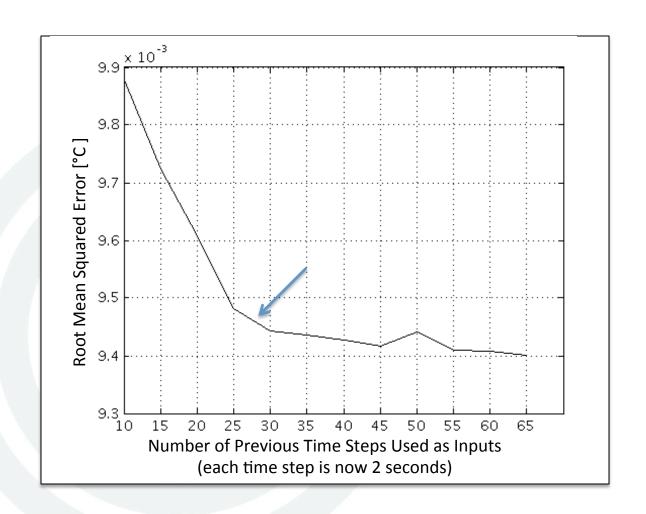
Model Design: Variable Dead-Time Removal

- **♦** Measurements supply a starting point → but the delays vary
- Empirical study with NN gives an optimal solution
- 25 candidates
- 15-fold validation



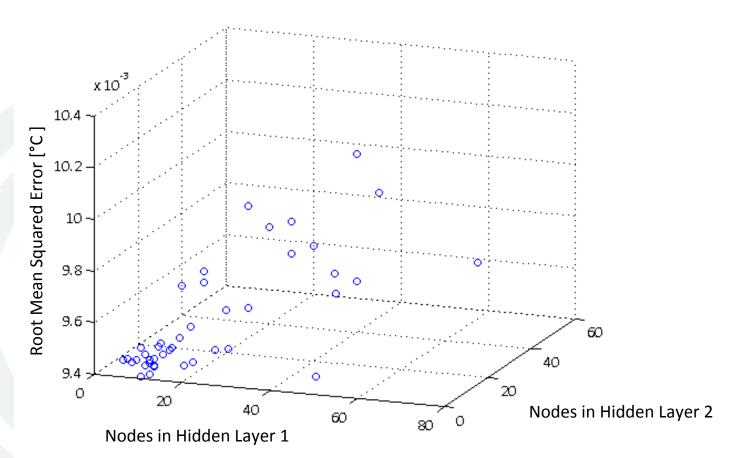
Model Design: Embedding Dimension

- 12 candidates
- 15-fold validation

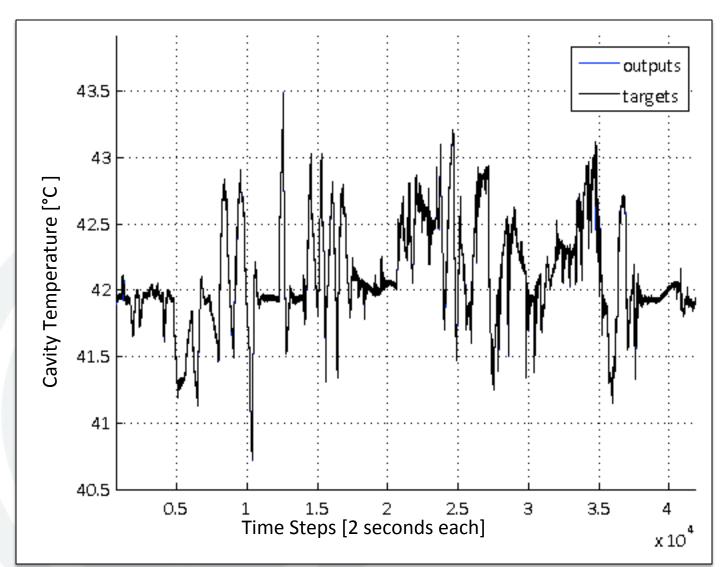


Number of Hidden Layers and Nodes

- 55 candidates for two-layer network
- 30 other candidates (not shown): recurrent, single-layer



Performance Over Training and Validation Set



0.0094 RMSE validation set

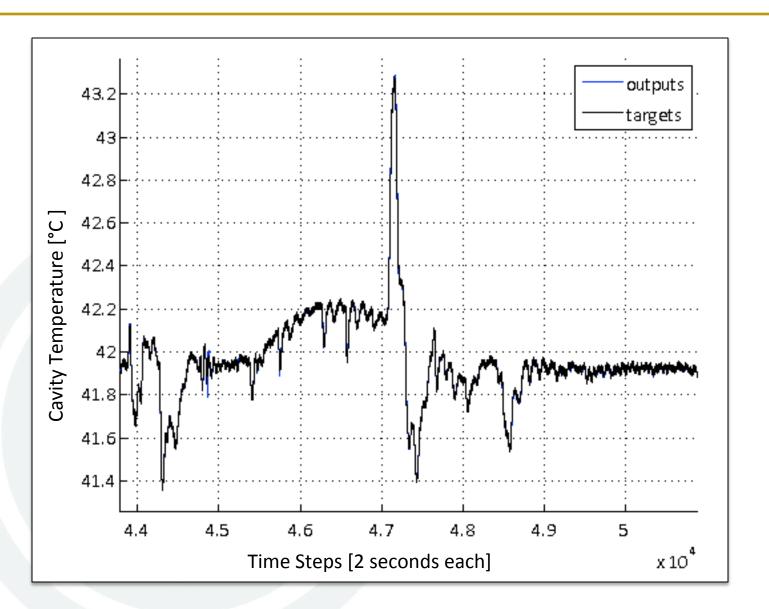
0.0092 RMSE training set

Region 1: pseudo-random impulses

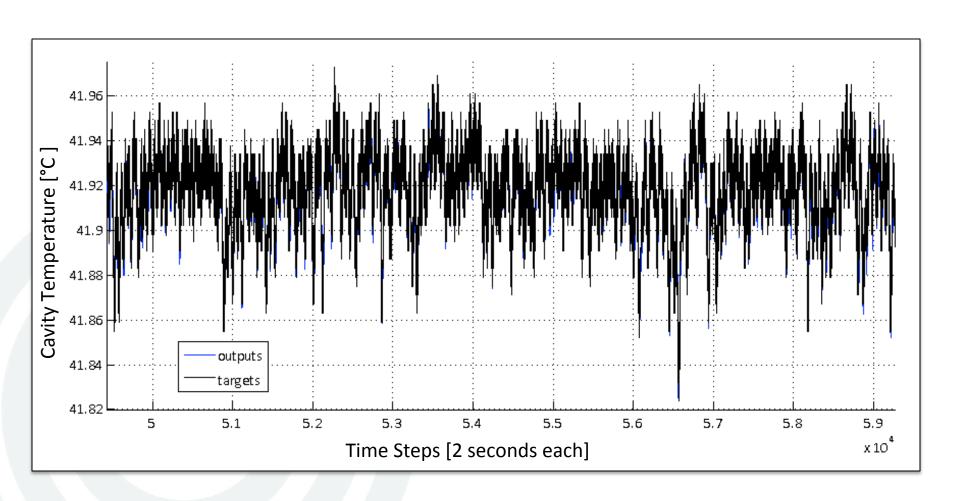
- **Region 1: pseudo-random impulses**
- **Region 2: steady-state with regulation**

- **Region 1: pseudo-random impulses**
- **Region 2: steady-state with regulation**
- * Region 3: cavity conditioning, slow change in RF power

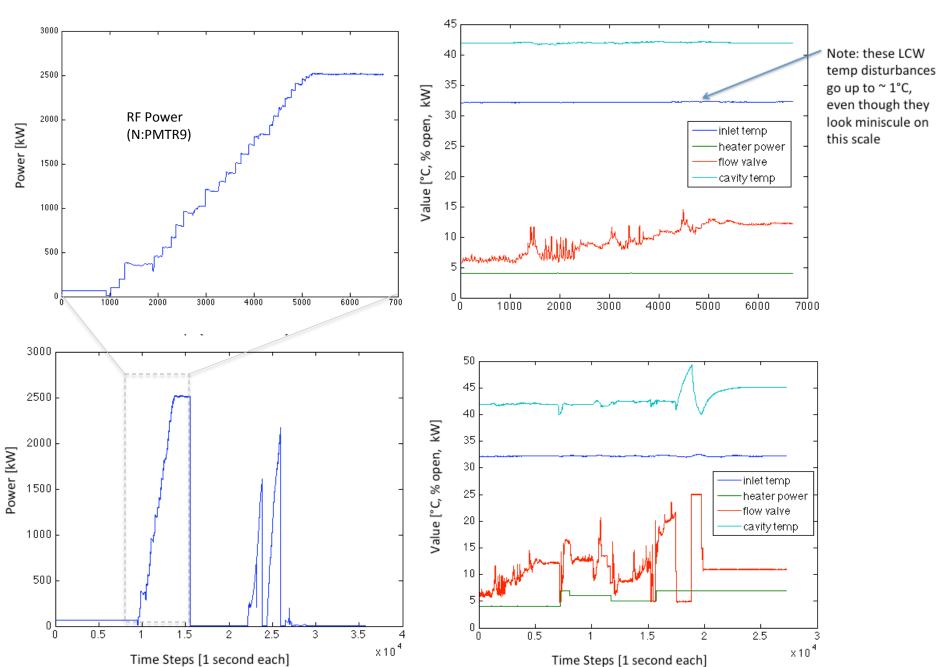
- **Region 1: pseudo-random impulses**
- Region 2: steady-state with regulation
- * Region 3: cavity conditioning, slow change in RF power
- Region 4: cavity conditioning, faster change in RF power

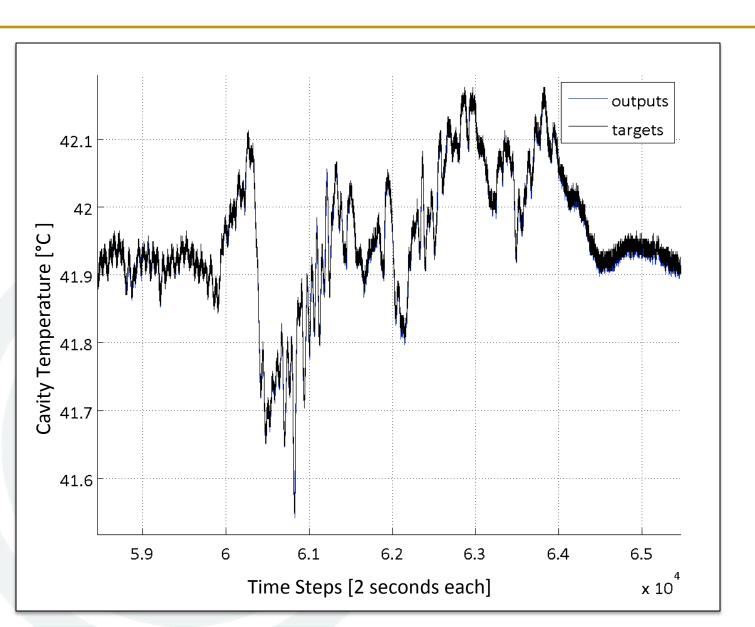


0.0100 RMSE

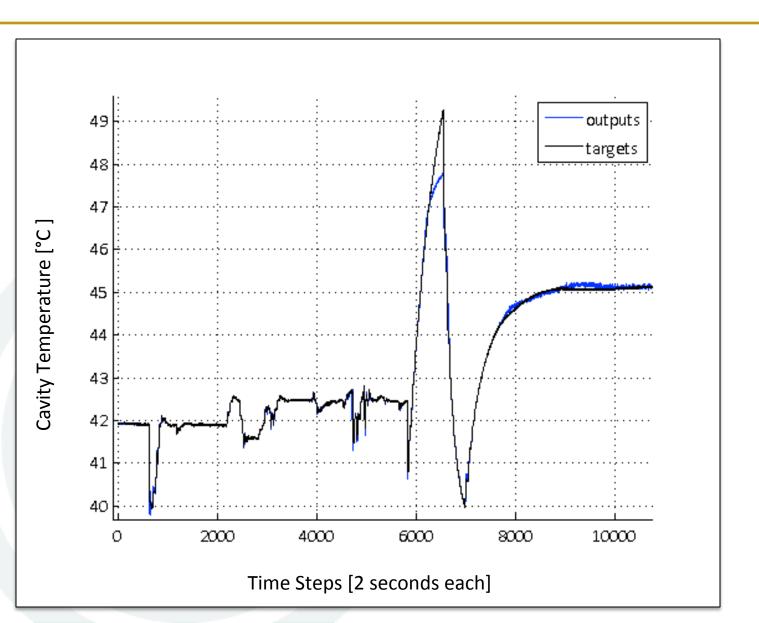


Testing Regions 3 and 4

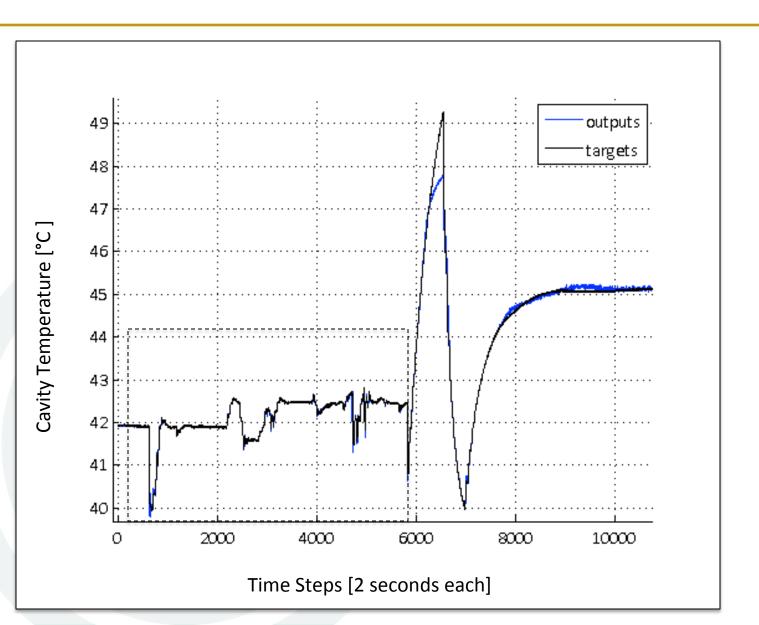




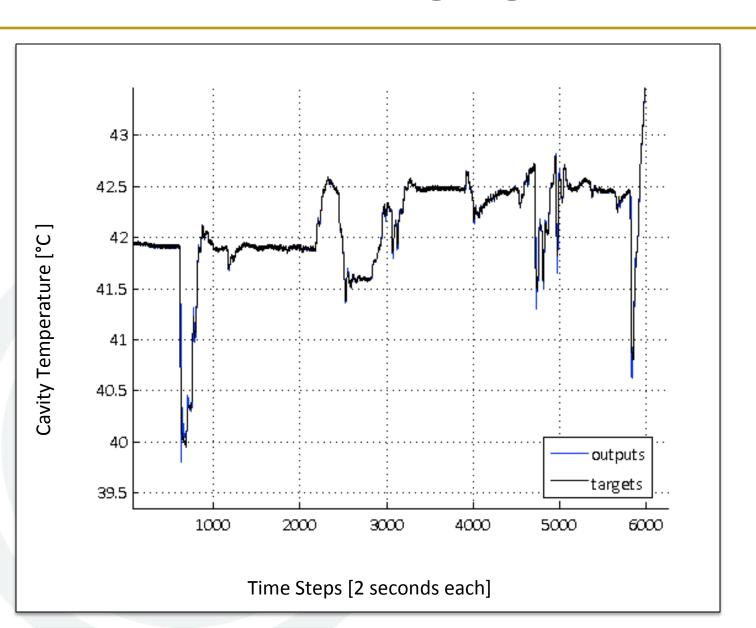
0.0156 RMSE



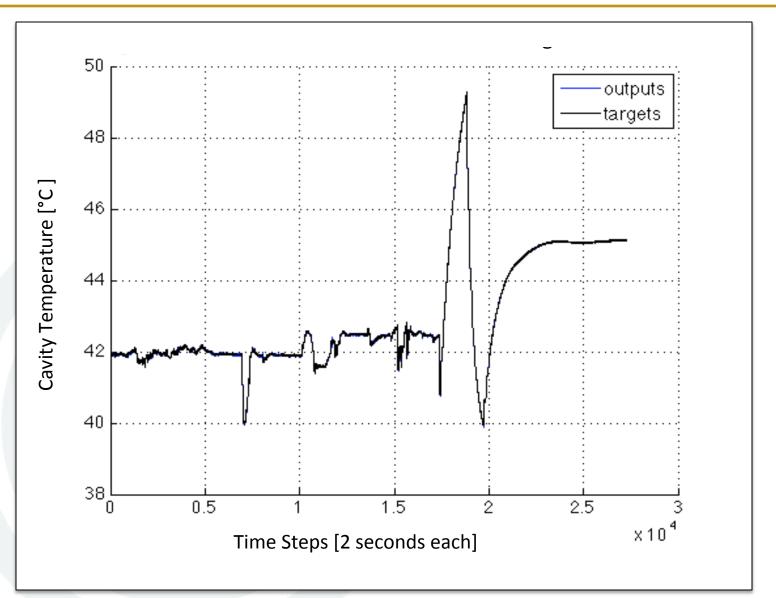
0.0549 RMSE



0.0549 RMSE



Performance on Testing Region 4 with Adaptation



0.0099 RMSE

Several options:

- Online adaptation
 - Slow and potentially unstable for large, rapid changes
 - Loss of previous learning

Several options:

- Online adaptation
 - Slow and potentially unstable for large, rapid changes
 - Loss of previous learning
- Use RF power as an input and train across the operating regimes
 - ❖ Would need a lot of data for many transition types → time intensive + likely not feasible to capture adequately
 - Likely would need to a more cumbersome NN structure

Several options:

- Online adaptation
 - Slow and potentially unstable for large, rapid changes
 - Loss of previous learning
- Use RF power as an input and train across the operating regimes
 - ❖ Would need a lot of data for many transition types → time intensive + likely not feasible to capture adequately
 - Likely would need to a more cumbersome NN structure
- Train several NNs with data gathered in different operating regimes
 - Can switch models in control routines
 - Can adapt online for small adjustments
 - Many small models instead of one large, potentially problematic model

Current and Next Steps

- ***** Fully characterize model performance under challenging conditions
 - If the model won't perform well, a model-based controller certainly won't
 - Need to test in real-time while doing I-O though ACNET
 - Need to test different updating schemes
 - Need to test regime-switching schemes
- Improve implementation of control script in Matlab
 - Real-time execution of NN, I-O with ACNET, optimization procedure, data preprocessing
 - Several computationally intensive processes
 - → tested ACNET and NN I-O previously with a very limited direct inverse controller, but this did not involve any updating or optimization routines
- Improve execution speed for Model Predictive Controller optimization
 - Instantaneous linearization
 - Different algorithm
- Simulations of controller performance
- Test controller output only
- Test controller operation in training regime