OPTICAL STOCHASTIC COOLING IN IOTA

Gene Kafka (IIT/ FNAL), Valeri Lebedev (FNAL)

OSC PRINCIPLES

- ▶ Microwave stochastic cooling suggested by Van der Meer (1969)
- ▶ OSC was suggested by Zolotorev, Zholents and Mikhailichenko (1994)

$$\lambda f_0 \approx \frac{W}{N} \Leftrightarrow \lambda \approx \frac{1}{N_{sample}}$$

- ▶ OSC works like MICROWAVE STOCHASTIC COOLING, but
 - exploits the superior bandwidth of optical amplifiers $\sim 10^{14}$ Hz.
 - can deliver damping rates 4 orders of magnitude larger
- ▶ UNDULATORS suggested to be used for both the PICKUP and KICKER in order to support the same optical range as the amplifier

sample length: \sim 10 cm $N_{sample} = N \frac{\Delta \ell}{\ell_b}$

MICROWAVE SLICING

OPTICAL SLICING

sample length: ~ I um

TEST OF OSC IN IOTA

- ▶ OSC was first attempted in BATES in 2007
 - existing electron synchrotron
 - ▶ did not receive enough support
- ▶ Will be one of several tests in IOTA
 - test in small electron ring is cost effective

IOTA Parameters in OSC mode	Value
Circumference	40 m
Nominal Beam energy	100 MeV
Bending field	4.8 kG
Transverse RMS emittances, $\varepsilon_{x}=\varepsilon_{y}$	11.5 nm
RMS momentum spread	1.23×10^{-4}
SR damping times (ampl.), $T_s/(T_x)$	1.4 / 0.67 s

OSC PRINCIPLES

laser wavelength

Only longitudinal kicks are effective for cooling:

$$\Delta \delta_i = \frac{\kappa \sin(k \Delta s_i)}{\kappa \sin(k \Delta s_i)} - \frac{\kappa \sum_{k \neq i}^{N} \sin(k \Delta s_i) + \psi_{ik}}{\kappa \sum_{k \neq i}^{N} \sin(k \Delta s_i)}$$
particle delay

- At optimum cooling rate is:
 - ~(bandwidth)/(number of slices in the sample)
- Correction signal is proportional to longitudinal position change
- Only longitudinal kicks are effective
 - longitudinal cooling requires s-x coupling
 - transverse cooling requires x-y coupling

▶ Pickup-to-kicker Transfer Matrix (vertical plane is uncoupled and omitted)

$$\begin{bmatrix} x \\ \theta_x \\ S \\ \Delta p \slashed{D} \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} & 0 & M_{16} \\ M_{21} & M_{22} & 0 & M_{26} \\ M_{51} & M_{52} & 1 & M_{56} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ \theta_x \\ S \\ \Delta p \slashed{D} \end{bmatrix}$$

▶ Partial slip factor (pickup-to-kicker) describes a particle's longitudinal displacement

$$\tilde{M}_{56} = C\eta_{pk} = M_{51}D_p + M_{52}D_p' + M_{56}$$

First order approximation of the longitudinal kick in the pickup:

$$\Delta \delta = \kappa \Delta s = \kappa \left(M_{51} x + M_{52} \theta_x + M_{56} \frac{\Delta p}{p} \right)$$

▶ Cooling rates per turn:

$$\begin{bmatrix} \lambda_x \\ \lambda_s \end{bmatrix} = \frac{\kappa}{2} \begin{bmatrix} M_{56} - \tilde{M}_{56} \\ C\eta_{pk} \end{bmatrix}$$

x-y coupling outside the bypass allows for redistribution of horizontal damping rate into both transverse planes

OSC PRINCIPLES

Cooling Range

 \blacktriangleright Cooling force depends on Δ s nonlinearly:

$$\Delta \delta = \kappa \sin(k\Delta s)$$

• where $k\Delta s = a_x \sin(\psi_x) + a_p \sin(\psi_p)$

- a_x and a_p are the amplitudes of longitudinal displacements in cooling chicane due to transverse and longitudinal motions (betatron and synchrotron radiation) in units of laser space
- ▶ Damping requires both lengthening amplitudes $(a_x \text{ and } a_p)$ to be smaller than $\mu_0 = 2.405 \rightarrow \text{this determines the cooling area boundary}$

Optical Amplifier

- ▶ Ti: Sapphire Optical Amplifier (2mm thick)
 - wide bandwith
 - ▶ can deliver significant amplification with only ~I mm delay
 - ▶ Allows operation in CW regime

V. Lebedev

A zero length sample will lengthen on its way from the pickup to the kicker

 \blacktriangleright Both $\Delta p/p$ and ϵ contribute to the sample lengthening

$$\sigma_{\Delta s}^2 = \sigma_{\Delta s \varepsilon}^2 + \sigma_{\Delta s p}^2$$

▶ For a Gaussian distribution:

$$\sigma_{\Delta s \varepsilon}^{2} = \varepsilon \left(\beta_{p} M_{51}^{2} - 2\alpha_{p} M_{51} M_{52} + \gamma_{p} M_{52}^{2} \right)$$

$$\sigma_{\Delta s p}^{2} = \sigma_{p}^{2} \left(M_{51} D_{p} - M_{52} D_{p}' + M_{56} \right)^{2}$$

In the linear approximation, β_p and α_p do not affect damping rates, but affect sample lengthening and consequently the cooling range

- ▶ The first approximation of cooling dynamics are determined by the:
 - orbit offset, h
 - path lengthening, δs
 - defocusing strength of the chicane quad, Φ
 - D^* and β^* in the center of the chicane
- $ightharpoonup \delta s$ is set by the delay in the amplifier
- $\blacktriangleright \Phi D^*h$ is set by the ratio of decrements
- ▶ The dispersion invariant, *A*, in the dipoles determines the equilibrium emittance.

$$\begin{split} M_{56} &\approx 2\Delta s, \\ \tilde{M}_{56} &\approx 2\Delta s - \Phi D^* h, \\ \lambda_x / \lambda_s &\approx \Phi D^* h / \left(2\Delta s - \Phi D^* h\right), \\ n_{\sigma x} &\approx \frac{\mu_0}{k\sigma_p} \left(2\Delta s - \Phi D^* h\right), \\ n_{\sigma x} &\approx \frac{\mu_0}{2kh\Phi\sqrt{\varepsilon\beta^*}}, \\ \Phi D^* h &\approx \frac{\mu_0}{2kn_{\sigma x}} \sqrt{\frac{A^*}{\varepsilon}} \end{split}$$

Cooling Chicane Parameters	Value
Delay in the chicane, ∆s	2 mm
Horizontal beam offset, h	2.01 cm
M ₅₆	4.8 kG
D^*/β^*	30 cm / 0.8 cm
Cooling rates ratio, $\lambda x = \lambda y/\lambda s$	1.18
Cooling ranges (before OSC)	2.1 / 3.2
Dipole: magnetic field * length	4.22 kG * 10 cm
Strength of central quad, GdL	1.58 kG

- Energy reduced from 150 MeV to reduce ε , σ_P and undulator period and length
- Operating at the coupling resonance Qx/Qy=6.36/2.36 reduces horizontal emittance and introduces vertical damping
- Small β^* is required to minimize sample lengthening due to betatron motion

OSC SECOND ORDER OPTICS

Using a realistic IOTA beam to develop second order optics

OSC BUNCH LENGTHENING

OSC PARAMETERS

OSC Parameters	Value
Undulator parameter, K	0.6
Undulator period	4.92 cm
Radiation wavelength at zero angle	750 nm
Number of periods, m	10
Total undulator length, Lw	0.5 m
Length from OA to undulator center	1.65 m
Amplifier gain (amplitude)	10
Telescope aperture, 2a	7 mm
Damping rates (x=y/s)	160/140 s ⁻¹

▶ OSC will be tested with and and without an optical amplifier

CONCLUSION

- ▶ Optics for OSC in ASTA has been developed, but the details are still being worked out; no showstoppers have been identified.
 - will aim to demonstrate cooling with and without an amplifier; the latter having a damping time that exceeds SR damping by about an order of magnitude