OPTICAL STOCHASTIC COOLING IN IOTA

Gene Kafka (IIT/ FNAL), Valeri Lebedev (FNAL)

OSC PRINCIPLES

- Microwave stochastic cooling suggested by Van der Meer (1969)
- OSC was suggested by Zolotorev, Zholents and Mikhailichenko (I994)

$$
\lambda f_{0} \approx \frac{W}{N} \Leftrightarrow \lambda \approx \frac{1}{N_{\text {sample }}}
$$

$$
N_{\text {sample }}=N \frac{\Delta \ell}{\ell_{b}}
$$

OPTICAL SLICING

sample length: \sim I um

- OSC works like MICROWAVE STOCHASTIC COOLING, but
- exploits the superior bandwidth of optical amplifiers $\sim 10^{14} \mathrm{~Hz}$.
- can deliver damping rates 4 orders of magnitude larger
- UNDULATORS suggested to be used for both the PICKUP and KICKER in order to support the same optical range as the amplifier

- OSC was first attempted in BATES in 2007
- existing electron synchrotron
- did not receive enough support
- Will be one of several tests in IOTA
- test in small electron ring is cost effective

IOTA Parameters in OSC mode	Value
Circumference	40 m
Nominal Beam energy	100 MeV
Bending field	4.8 kG
Transverse RMS emittances, $\varepsilon_{\mathrm{x}}=\varepsilon_{y}$	11.5 nm
RMS momentum spread	1.23×10^{-4}
SR damping times (ampl.), $\mathrm{T}_{s} /\left(\mathrm{T}_{\mathrm{x}}\right)$	$1.4 / 0.67 \mathrm{~s}$

optical stochastic cooling insert

Only longitudinal kicks are effective for cooling:

- At optimum cooling rate is:

- $\quad \sim($ bandwidth)/(number of slices in the sample)
- Correction signal is proportional to longitudinal position change
- Only longitudinal kicks are effective
- longitudinal cooling requires s-x coupling
- transverse cooling requires $x-y$ coupling
- Pickup-to-kicker Transfer Matrix (vertical plane is uncoupled and omitted)

$$
\left[\begin{array}{c}
x \\
\theta_{x} \\
s \\
\Delta p / p
\end{array}\right]=\left[\begin{array}{cccc}
M_{11} & M_{12} & 0 & M_{16} \\
M_{21} & M_{22} & 0 & M_{26} \\
M_{51} & M_{52} & 1 & M_{56} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
\theta_{x} \\
s \\
\Delta p / p
\end{array}\right]
$$

- Partial slip factor (pickup-to-kicker) describes a particle’s longitudinal displacement

$$
\tilde{M}_{56}=C \eta_{p k}=M_{51} D_{p}+M_{52} D_{p}^{\prime}+M_{56}
$$

- First order approximation of the longitudinal kick in the pickup:

$$
\Delta \delta=\kappa \Delta s=\kappa\left(M_{51} x+M_{52} \theta_{x}+M_{56} \frac{\Delta p}{p}\right)
$$

- Cooling rates per turn:

$$
\left[\begin{array}{l}
\lambda_{x} \\
\lambda_{s}
\end{array}\right]=\frac{\kappa}{2}\left[\begin{array}{c}
M_{56}-\tilde{M}_{56} \\
C \eta_{p k}
\end{array}\right]
$$

- $x-y$ coupling outside the bypass allows for redistribution of horizontal damping rate into both transverse planes

Cooling Range

- Cooling force depends on Δs nonlinearly:

$$
\Delta \delta=\kappa \sin (k \Delta s)
$$

- where $k \Delta s=a_{x} \sin \left(\psi_{x}\right)+a_{p} \sin \left(\psi_{p}\right)$

- a_{x} and a_{p} are the amplitudes of longitudinal displacements in cooling chicane due to transverse and longitudinal motions (betatron and synchrotron radiation) in units of laser space
- Damping requires both lengthening amplitudes (a_{x} and a_{p}) to be smaller than $\mu_{0}=2.405 \rightarrow$ this determines the cooling area boundary

Optical Amplifier

- Ti: Sapphire Optical Amplifier (2mm thick)
- wide bandwith
- can deliver significant amplification with only $\sim 1 \mathrm{~mm}$ delay
- Allows operation in CW regime
- A zero length sample will lengthen on its way from the pickup to the kicker

- Both $\Delta \mathrm{p} / \mathrm{p}$ and ε contribute to the sample lengthening $\sigma_{\Delta s}^{2}=\sigma_{\Delta s \varepsilon}^{2}+\sigma_{\Delta s p}^{2}$
- For a Gaussian distribution:

$$
\begin{aligned}
& \sigma_{\Delta s \varepsilon}^{2}=\varepsilon\left(\beta_{p} M_{51}^{2}-2 \alpha_{p} M_{51} M_{52}+\gamma_{p} M_{52}^{2}\right) \\
& \sigma_{\Delta s p}^{2}=\sigma_{p}^{2}\left(M_{51} D_{p}-M_{52} D_{p}^{\prime}+M_{56}\right)^{2}
\end{aligned}
$$

- In the linear approximation, β_{p} and α_{p} do not affect damping rates, but affect sample lengthening and consequently the cooling range

Sample lengthening in chicane

- The first approximation of cooling dynamics are determined by the:
- orbit offset, h
- path lengthening, δs
- defocusing strength of the chicane quad, Φ
- D^{*} and β^{*} in the center of the chicane
- δs is set by the delay in the amplifier
- $\Phi D^{*} h$ is set by the ratio of decrements
- The dispersion invariant, A, in the dipoles determines the equilibrium emittance.

$$
\begin{aligned}
& M_{56} \approx 2 \Delta s \\
& \tilde{M}_{56} \approx 2 \Delta s-\Phi D^{*} h \\
& \lambda_{x} / \lambda_{s} \approx \Phi D^{*} h /\left(2 \Delta s-\Phi D^{*} h\right) \\
& n_{\sigma x} \approx \frac{\mu_{0}}{k \sigma_{p}}\left(2 \Delta s-\Phi D^{*} h\right) \\
& n_{\sigma x} \approx \frac{\mu_{0}}{2 k h \Phi \sqrt{\varepsilon \beta^{*}}}, \\
& \Phi D^{*} h \approx \frac{\mu_{0}}{2 k n_{\sigma x}} \sqrt{\frac{A^{*}}{\varepsilon}}
\end{aligned}
$$

- Energy reduced from 150 MeV to reduce $\varepsilon, \sigma \mathrm{p}$ and undulator period and length
- Operating at the coupling resonance $\mathrm{Qx} / \mathrm{Qy}=6.36 / 2.36$ reduces horizontal emittance and introduces vertical damping
- Small β^{*} is required to minimize sample lengthening due to betatron motion

OSC SECOND ORDER OPTICS

Using a realistic IOTA beam to develop second order optics

OSC BUNCH LENGTHENING

OSC Parameters	Value
Undulator parameter, K	0.6
Undulator period	4.92 cm
Radiation wavelength at zero angle	750 nm
Number of periods, m	10
Total undulator length, Lw	0.5 m
Length from OA to undulator center	1.65 m
Amplifier gain (amplitude)	10
Telescope aperture, 2a	7 mm
Damping rates $(\mathrm{x}=\mathrm{y} / \mathrm{s})$	$160 / 140 \mathrm{~s}^{-1}$

- OSC will be tested with and and without an optical amplifier
- Optics for OSC in ASTA has been developed, but the details are still being worked out; no showstoppers have been identified.
- will aim to demonstrate cooling with and without an amplifier; the latter having a damping time that exceeds SR damping by about an order of magnitude

