
OPTICAL STOCHASTIC 
COOLING IN IOTA

Gene Kafka (IIT/ FNAL),  Valeri Lebedev (FNAL)

Monday, June 9, 14



pick-up

bypass (no phase mixing)

good phase 
mixing

kicker

cooling heating

Δx(t) = − g
N
xi (t)+

g
N

xk (t)
k≠i

N

∑

    OSC PRINCIPLES

‣ Microwave stochastic cooling suggested by Van der Meer (1969)
‣ OSC was suggested by Zolotorev, Zholents and Mikhailichenko (1994)

‣ OSC works like MICROWAVE STOCHASTIC COOLING, but 
- exploits the superior bandwidth of optical amplifiers ~1014 Hz.
- can deliver damping rates 4 orders of magnitude larger

‣ UNDULATORS suggested to be used for both the PICKUP and 
KICKER in order to support the same optical range as the amplifier
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    TEST OF OSC IN IOTA

‣ OSC was first attempted in BATES in 2007
‣ existing electron synchrotron
‣ did not receive enough support

‣ Will be one of several tests in IOTA
‣ test in small electron ring is cost 

effective 

IOTA Parameters in OSC mode Value

Circumference 40 m

Nominal Beam energy 100 MeV

Bending field 4.8 kG

Transverse RMS emittances, εx=εy 11.5 nm

RMS momentum spread 1.23 x 10-4

SR damping times (ampl.),τs/(τx) 1.4 / 0.67 s
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cooling heating

particle delay

Only longitudinal kicks are effective for cooling: 

‣ At optimum cooling rate is: 
- ~(bandwidth)/(number of slices in the sample)

‣ Correction signal is proportional to longitudinal position change 
‣ Only longitudinal kicks are effective
- longitudinal cooling requires s-x coupling
- transverse cooling requires x-y coupling
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    OSC PRINCIPLES
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    OSC OPTICS
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‣ Pickup-to-kicker Transfer Matrix (vertical plane is uncoupled and omitted)

‣ Partial slip factor (pickup-to-kicker) describes a particle’s longitudinal displacement

 
M 56 = Cηpk = M 51Dp +M 52 ′Dp +M 56

Δδ =κΔs =κ M 51x +M 52θ x +M 56
Δp
p( )

‣ First order approximation of the longitudinal kick in the pickup:
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‣ Cooling rates per turn: 

‣ x-y coupling outside the bypass allows 
for redistribution of horizontal damping 
rate into both transverse planes
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    OSC PRINCIPLES

Test of Optical stochastic cooling in the IOTA ring, Valeri Lebedev, PAC-2013 6
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Basics of OSC - Cooling Range  
� Cooling force depends on 's nonlinearly   
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where    
and ax & ap are the amplitudes of longitudinal displacements in cooling 
chicane due to A and L motions measured in units of laser phase  

� Averaging yields the form-factors for damping rates  
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� Damping requires both lengthening 
 amplitudes (ax  and ap) to be smaller 
than P�|2.405 

‣ Cooling force depends on Δs nonlinearly: 

‣ where

‣ ax and ap are the amplitudes of longitudinal displacements in cooling chicane due 
to transverse and longitudinal motions (betatron and synchrotron radiation) in 
units of laser space

‣ Damping requires both lengthening amplitudes (ax and ap) to be smaller than
μ0  = 2.405 → this determines the cooling area boundary

Δδ =κ sin(kΔs)

kΔs = ax sin(ψ x )+ ap sin(ψ p )

V. Lebedev

Cooling Range

Optical Amplifier

‣ Ti: Sapphire Optical Amplifier (2mm thick)
‣ wide bandwith
‣ can deliver significant amplification with only ~1 mm delay
‣ Allows operation in CW regime
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    OSC OPTICS
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‣ A zero length sample will lengthen on its way from the pickup to the kicker

‣ Both Δp/p and ε contribute to the sample lengthening
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‣ For a Gaussian distribution:

‣ In the linear approximation, βp and αp do not 
affect damping rates, but affect sample 
lengthening and consequently the cooling range 

~2 μm
lengthening
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    OSC OPTICS

pick-up undulator kicker undulator

light path
optical amplifier

Monday, November 25, 13

‣ The first approximation of cooling dynamics are 
determined by the:
- orbit offset, h
- path lengthening, δs
- defocusing strength of the chicane quad, Φ
- D* and β* in the center of the chicane

‣ δs is set by the delay in the amplifier

‣ ΦD*h is set by the ratio of decrements

‣ The dispersion invariant, A, in the dipoles 
determines the equilibrium emittance. 
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Cooling Chicane Parameters Value

Delay in the chicane, Δs 2 mm

Horizontal beam offset, h 2.01 cm

M56 4.8 kG

D*/β* 30 cm / 0.8 cm

Cooling rates ratio, λx=λy/λs 1.18

Cooling ranges (before OSC) 2.1 / 3.2

Dipole: magnetic field * length 4.22 kG * 10 cm

Strength of central quad, GdL 1.58 kG

• Energy reduced from 150 MeV to reduce ε, σp and undulator period and length

• Operating at the coupling resonance Qx/Qy=6.36/2.36 reduces horizontal emittance and 
introduces vertical damping

• Small β* is required to minimize sample lengthening due to betatron motion

    OSC OPTICS
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    OSC SECOND ORDER OPTICS 

Σbeam =V[6×6]ε[6×6]V
T
[6×6] =

Using a realistic IOTA beam to develop second order optics
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    OSC BUNCH LENGTHENING
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OSC Parameters Value

Undulator parameter, K 0.6

Undulator period 4.92 cm

Radiation wavelength at zero angle 750 nm

Number of periods, m 10

Total undulator length, Lw 0.5 m

Length from OA to undulator center 1.65 m

Amplifier gain (amplitude) 10

Telescope aperture, 2a 7 mm

Damping rates (x=y/s) 160/140 s-1

    OSC PARAMETERS

‣ OSC will be tested with and and without an optical amplifier
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    CONCLUSION

‣Optics for OSC in ASTA has been developed, but 
the details are still being worked out; no show-
stoppers have been identified.
‣will  aim to demonstrate cooling with and 

without an amplifier; the latter having a damping 
time that exceeds SR damping by about an order 
of magnitude
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