Non-linear IOTA inserts

Finn H. O'Shea*

Design, manufacture and measurement of the phase I prototype and considerations for the phase II (full size) demonstration model

*Participants

- RadiaBeam Technologies:
 - F. H. O'Shea, R. Agustsson, E. Spranza, Y-C. Chen,
 A. Murokh
- FermiLab:
 - A. Valishev, S. Nagaitsev

Outline

- Previous talks covered the why, so I'll cover the inserts exclusively.
- Design philosophy.
- Phase I: design, build and measure a short prototype.
 - Testing several "new to us" magnet design techniques and a new measurement system
- Phase II: design, build, measure and install a full scale demonstration model.

Design Philosophy I

Series expansion!

$$\Phi(x,y,s) \equiv \frac{B\rho c^2}{\beta(s)} \phi(x/\beta(s), y/\beta(s))$$

$$\phi(x_N,y_N) = t \sum_{n=1}^{\infty} \frac{2^{2n-1} n! (n-1)!}{(2n)!} \left(\frac{x_N^2 + y_N^2}{c^2}\right)^n \sin\left[2n \arctan\left(\frac{y_N}{x_N}\right)\right]$$

- 1. Segment the magnet so that each segment is a 2D multipole magnet with $\beta = constant$
 - 20 segments
 - Excite them all with a single pair of coils
 - Tune via the reluctance of the return yokes

Design Philosophy II

- 2. Deal with the peculiarities of this potential
 - The series expansion on the previous page papers over a singularity
 - The desired good field region isn't round, for practical reasons, we desire a larger vertical region with good field
- 3. Use the scalar potential just like normal for quads and sexts, etc...
 - This "hammer" works so well in multipoles, try to use it here as well

Series Expansion Hides...

There is a pair of infinities at

$$x_N = \pm c, y_N = 0$$

This limits the region over which the expansion can possibly work $\sqrt{x_N^2 + y_N^2} \leq c$

- Maybe we could try to place a current there
 - who wants to mess around with an infinity?
 - Didn't seem to work well in simulation anyhow!

Full Potential

One solution to rule them all

- Typical multipole design
 - 1. Find an equipotential surface
 - 2. Put iron on one side of that surface
 - 3. Correct for edges
 - Energize the iron with some kind of B-field source
- By finding a solution in normalized space, we can solve the equipotential problem only once

Return to real space

- To make the universal solution useful
 - Extend the top up to increase the good field region in y to y $\lesssim 0.8~\beta^{1/2}$ 10 c (found with 2D sims)
 - Cut off the corner near $x = \beta^{1/2} c$
 - Put in a return yoke so that a coil can be added.
- Add reluctance gap

Segments 1,5 and 10

Error Tolerances

- Preliminary tolerances:
 - Co-axial to 50 µm
 - Less than 1% deviation from ideal field
- Manufacturing tolerances set via 3D simulation
- This makes a tolerance table we think we can hit

- Want to maintain the good field region from the 2D simulations:
 - $y \lesssim 0.8 \, \beta^{1/2} \, c$
 - $x \lesssim 0.6 \ \beta^{1/2} \ c$

The result

Pulse Wire Axis Measurement

- In principle, this method can tell us whether the axes of each of the four sections is common
- The wire won't deflect if they have a common axis
- Sort of worked vibrating wire might work better

3 measurements

Measuring this structure

The design has very narrow openings transversely, how do you measure it?

"New to us" method: push and pull a set of tiny hall probes through

 Uses the a natural coordinate system for the structure

Currently being commissioned

Hall Probe Details

Probe Assembly

Microscope Image of Probe

Demonstration Model

- Expand the 4 segment prototype to all 20 segments
- Motorize the return yokes or power each segment separately
- Will measurement system scale up?
- Vacuum chamber is a really tough part
 - 1. Everything in vacuum
 - 2. Everything out of vacuum
 - 3. Poles in vacuum, yokes out of vacuum
- Leaning toward everything out of vacuum

Summary

- 4 segment prototype was designed, manufactured and a measurement system is being commissioned
- The design philosophy appears promising
- Particle tracking with the simulated fields is on-going, will use measured fields when available
- The largest remaining open question is how to integrate the vacuum system.