
Drivig random numbers in art

Gianluca Petrillo

LArSoft stakeholders’ and partners’ meeting, April 22nd , 2014

1 Random numbers in art

2 Continuing a previous job
3 Reproducing an existing job
4 Controlling generator seeds
5 Other use cases?

G. Petrillo (University of Rochester) Controlling fate April 22nd , 2014 1 / 12

Random number generators in art

art provides a central manager of random generators: the
RandomGeneratorService (RGS) service, managing engines from
CLHEP library.

an engine can produce a sequence of pseudo-random numbers
RGS assigns engines to the modules
each engine is used only by one module
one module can use more engines

Each module asks all the engines it needs in its constructor, specifying
a seed and an optional label:
createEngine(seed); // default random engine
createEngine(seed_OptRandom, "OptRandom"); // another one

When the module needs a generator, it asks RGS for the engine:
art::ServiceHandle<art::RandomNumberGenerator> rng;
CLHEP::HepRandomEngine& engine = rng->getEngine(); // or ("OptRandom")
CLHEP::RandFlat flat(engine); // example: extract with flat distribution

G. Petrillo (University of Rochester) Controlling fate April 22nd , 2014 2 / 12

Continuing a previous job

Use cases:
split a long job in a sequence of subjobs, run the first subjob, and
have the second subjob run from where the first ended
extend an existing job with additional events

... using only one sequence of random numbers across the jobs rather
than one different sequence for each job.

Uncorrelated subjobs:
Subjob #1 (N events)

r
1

rseed

r
2

r
3

r
4

r
5

r
6

r
7

r
N...

Subjob #2 (M events)
s
M... ...

sseed

s
1

s
2

s
3

s
4

s
5

s
6

s
7

Sequence of subjobs:
Subjob #1 (N events)

r
1

r
2

r
3

r
4

r
5

r
6

r
7

r
N...

Subjob #2 (M events)
r
N+1

r
N+M...r

N+2
r
N+3

r
N+4

r
N+5

r
N+6

r
N+7 ...

rseed

G. Petrillo (University of Rochester) Controlling fate April 22nd , 2014 3 / 12

How to continue random sequences across jobs

RGS can restore the status of all the engines at the beginning of a job,
and/or save them at the end of the job.

First job:
services.RandomNumberGenerator.saveTo: "FinalStateJob1.txt"

Second job:
services.RandomNumberGenerator.readFrom: "FinalStateJob1.txt"
services.RandomNumberGenerator.saveTo: "FinalStateJob2.txt"

Note that the saveTo file must be copied back from the job, and
shipped to the next one.

This will preserve all the random engines known by
RandomGeneratorService.

G. Petrillo (University of Rochester) Controlling fate April 22nd , 2014 4 / 12

Reproducing an existing job

Use cases:
a code change: we want to compare products of old and new code
a job crashes: we want to reproduce the crash, ideally jumping
directly to the troublesome event

RandomGeneratorService can also read the state of all engines
from the input file, and reseed them event by event.
The RandomNumberSaver module can save the current state of all
engines as a product into the event.

G. Petrillo (University of Rochester) Controlling fate April 22nd , 2014 5 / 12

How to produce a job

lar -c standard_g4.fcl -s generated.root:

input products [gen]

RandomNumberSaver [rns]

LArG4

...

Generated.root

RandomGeneratorService
standard_g4.fcl

process_name: sim

art

engine states [sim]

Simulated.root

input products [gen]

output products [sim]

G. Petrillo (University of Rochester) Controlling fate April 22nd , 2014 6 / 12

How to reproduce the same job

lar -c standard_g4_again.fcl -s simulated.root:

RandomNumberSaver [rns]

LArG4

...

RandomGeneratorService

standard_g4_again.fcl
process_name: resim
…RestoreStateLabel: rns

art

engine states [sim]

Simulated_again.root

input products [gen]

output [resim]
engine states [sim]

Simulated.root

input products [gen]

output products [sim] Drop!

engine states [resim]

The new input file could be something like:
#include "standard_g4.fcl"

process_name: resim
services.RandomNumberGenerator.restoreFromLabel: "art::RNGsnapshots_rns__sim"
source.inputCommands: ["keep *", "drop *_*_*_sim", "keep *_rns_*_sim"]

where the restoreFromLabel will be used by a
art::Event::getByLabel() call to read the engine state product.
G. Petrillo (University of Rochester) Controlling fate April 22nd , 2014 7 / 12

Central control of the seeds

Use cases:
manage all the job seeds with minimal bookkeeping and effort
make sure no jobs have the same seed
be able to rerun a job

No code ready in art.

mu2e has written a service with the purpose to address the two cases
described above.

G. Petrillo (University of Rochester) Controlling fate April 22nd , 2014 8 / 12

mu2e SeedService service

SeedService (SS) provides a seed to each module asking one
(or more!)
the seeds are determined by:

1 a base seed (baseSeed)
2 the order of the request (but it depends on policy)

a few different policies are already implemented; the simplest: the
first seed is baseSeed, the second seed is baseSeed + 1 etc.

Each engine should be immediately seeded on creation in its module
constructor; for example:
createEngine(pset.get<int>
("Seed", art::ServiceHandle<mu2e::SeedService>()->getSeed()));

createEngine(pset.get<int>("Seed",
art::ServiceHandle<mu2e::SeedService>()->getSeed("OptRandom")),
"OptRandom");

The base seed is set in the configuration file, and can also printed in
the Info output stream of each job.
G. Petrillo (University of Rochester) Controlling fate April 22nd , 2014 9 / 12

SeedService service vs. RandomNumberSaver

Respect to the solution with RandomNumberSaver (RNS):
SS does not allow to jump to a specific event
to reproduce an exitsing run, SS relies on the configuration to be
exactly the same
RNS does not provide any control at all on the seed
SS requires each single module to explicitly use its services

Example: mu2e approach

split a production job in N jobs (each with an index ijob ∈ [1,N])
initialize services.SeedService.baseSeed with ijob

With the proper policy (“linearMapping”) this is enough to guarantee
unique sequences for the whole production.

G. Petrillo (University of Rochester) Controlling fate April 22nd , 2014 10 / 12

Other use cases?

the available software within art addresses needs from a couple
of use cases
the SeedService could address another one
are there comments or opinions about this last one?
are there requests for other use cases?

Unusual seeding practises
ShowerSelectorFilter and others always use a random seed
fuzzyCluster and HoughLineFinder use either a random seed,

or the same random numbers for all the events (reseeding
each event with the same seed)

... and a few more

Recommended:
createEngine(pset.get<int>

("Seed", SeedCreator::CreateRandomNumberSeed()));

G. Petrillo (University of Rochester) Controlling fate April 22nd , 2014 11 / 12

Further reading

Documentation from mu2e
Random generator service: http://mu2e.fnal.gov/public/
hep/computing/Random.shtml
Other art services: http://mu2e.fnal.gov/public/hep/
computing/artNativeServices.shtml

G. Petrillo (University of Rochester) Controlling fate April 22nd , 2014 12 / 12

http://mu2e.fnal.gov/public/hep/computing/Random.shtml
http://mu2e.fnal.gov/public/hep/computing/Random.shtml
http://mu2e.fnal.gov/public/hep/computing/artNativeServices.shtml
http://mu2e.fnal.gov/public/hep/computing/artNativeServices.shtml

	Random numbers in art
	Continuing a previous job
	Reproducing an existing job
	Controlling generator seeds
	Other use cases?

