Compression level of ROOT output

Gianluca Petrillo

<code>LArSoft Librarians' meeting, May 6^{th} , 2014</code>

G. Petrillo (University of Rochester)

ompression level of ROOT output

May 6th , 2014 1 / 9

Output files

- products are propagated by art from input to output
- RootOutput module has more and more work as we go down the production chain
- it can take relevant time

Our observations:

- Wesley has noticed that the time taken by RootOutput strongly depends on the compression level we request...
- ... and the compression level may have limited impact on the size of the output
- Herbert has confirmed that this kind of findings led DØ to choose a compression level 1
- art sets compression level to 7 by default

I have collected some figures to help characterize this behaviour.

- tests run with LArSoft v1_01_00 on GPVM machines
- 100 events per job
- same random seeds when appropriate
- compression level set by one line like: outputs.out1.compressionLevel: 7 (out1 being the label of the RootOutput module)

Figures have $\mathcal{O}(3\%)$ statistical fluctuations.

	prodsingle		reco			
compr.			input compr. 0		input compr. 7	
level	size [MB]	s/evt	size [MB]	s/evt	size [MB]	s/evt
0	58.4	0.0086	26499.5	0.072	26231.9	0.075
1	32.4	0.026	667.7	0.521	640.9	0.515
2	32.4	0.028	667.7	0.547	641.0	0.561
7	31.1	0.050	650.7	0.801	623.9	0.779

prodsingle → prodsingle_lbnefd.fcl

```
\texttt{reco} \rightarrow \texttt{standard\_reco\_lbnefd.fcl}
```

The reco test has beed performed with two different inputs:

- from prodsingle output produced with compression level 0;
- Irom prodsingle output produced with compression level 7.

compr.	prodsingle		reco2D		
level	size [GB]	s/evt	size [GB]	s/evt	peak mem [GB]
0	16.054	0.39	32.42	0.7	2.38
1	0.581	1.06	26.91	16.8	2.49
2	0.551	1.05	26.93	18.9	2.53
7	0.368	2.77	26.66	41.4	2.47

prodsingle → prodsingle_uboone.fcl

 $reco2D \rightarrow standard_reco_uboone_2D_noopt.fcl$

The $\tt reco$ test has beed performed with input produced with compression level 7.

- the size of the output also depends (mildly) on the compression of the input
- the mileage varies a lot with the job
- going from compression level 1 to 7:
 - \Rightarrow produces 5–50% larger files
 - \Rightarrow takes 35–85% less time
- small differences between compression levels 1 and 2
- memory impact seems to be minor

Further tests:

• how does "fast cloning" affect the size of "reco" jobs?

Additional material

prodsingle_lbnefd.fcl SingleGen, LArG4, SimWireLBNE35t, RandomNumberSaver, TriggerResultInserter

standard_reco_lbnefd.fcl CalWireLBNE35t, GausHitFinder, HitCheater, TriggerResultInserter

prodsingle_uboone.fcl SingleGen, LArG4, SimWireMicroBooNE, TriggerResultInserter

standard_reco_uboone_2D_noopt.fcl RandomNumberSaver, CalWireMicroBooNE, GausHitFinder, RFFHitFinder, fuzzyCluster, ClusterCrawler, LArPandora, TriggerResultInserter