Compression of raw digits

Gianluca Petrillo

$\tt LArSoft$ Librarians' meeting, May 20^{th} , 2014

ROOT trees with art are a complicate business.

Each data product read from or written to a ROOT tree uses some of the following:

- ROOT "baskets" to read compressed data from the tree
- uncompressed objects where input data is read from the tree
- object in the event (is that the same as above or below?)
- o uncompressed objects from which output data is written to the tree
- ROOT "baskets" to write compressed data to the tree

This can effectively double or triple the memory requirement of a product. And tree buffers are permanent¹: if an event requires 100 MB of buffers, those buffers will survive for many events after that one.

¹Exceptions apply.

A reco3D output file

An indication of where to look can be given by the size of the data in the tree. From a μ BooNE 3.6 GB output (ν + cosmics, down to 3D reco), 5 events:

recob::Wire, 1.6 GB already addressed by Baller's "regions of interest" approach

Each of these is a good candidate for investigation:

Can the data in these object be reduced?

- contains a list of ADC counts (16-bit each)
- produced by the detector or the detector simulation (SimWireXxxx)
- supports data compression (Huffman already implemented)
- data compression is turned off by default

Well, today I lift my finger just enough to enable that compression:

physics.producers.daq.CompressionType: Huffman

Today's study: raw::RawDigit tests

The following test has been performed with

standard_detsim_3window_uboone.fcl (wire and optical digitization and output) on a ν_e + cosmic rays, 100-event sample.

RawDigit compression	none	Huffman
file size	6121 MB	6061 MB
RawDigit branch size	274 MB	213 MB
data size	37.98 GB	22.56 GB
RawDigit data size	15.87 GB	0.45 GB
total time	2195 s	2144 s
SimWireXxxx time	1115 s	1188 s
RootOutput time	735 s	550 s
peak total memory ²	2.3/2.9/3.1 GB	1.6/2.5/2.8 GB
RootOutput memory	795/941/1000 MB	415/561/620 MB

(the file sizes in the first block are from the Reco3D test in the previous page)

RootOutput compression level is the default (7).

²Sampled at three different times. RootOutput memory monotonically increases.

G. Petrillo (University of Rochester)

Conclusions

- the size of data products heavily affects memory usage
- reducing this size scales into a large reduction of used memory
- I am going to investigate the most apparent cases looking for solutions
- reduction in memory size usually means need of more CPU to use the products
- compression of raw::RawDigit has quite some advantage...

Is the code ready for raw::RawDigit compression?

raw::RawDigit does not provide an automatic way to compress/uncompress the digits. The user of raw::RawDigit must uncompress the data each time before using it. Is all the code following that prescription?