MicroBooNE Goals, Status, Needs

H. Greenlee



Outline

e Status.

e Testing.



Nightly Build

e Nightly builds in place for uboonecode package.
- Uses script in laradmin/nightly/nightly.sh.

- Wrote our own cron wrapper (4am). Uses uboone shared keytab.

- No systematic error checking.



Tingjun Yang
Users Meeting

Analysis Tools

* Analysis Tools sub-groups in Nearly Complete
Autumated reconstruction

place and developing tools o -
since May; 2013

framework

* Regular MC challenges.

Space

: Points
* Progress on Reconstruction/

simulation/software tools.

Clusters

* Reconstruction workshop at Vertex Showers Tracks

Yale in March, 2014.

Calorimetry

* >90% ethciency to reconstruct

COSmMiIC muons. -



Algorithms Status

e There has been major recent progress in the following areas.

— Simulation.

o Electronics simulation (including noise).
* Field response simulation.
e Optical and trigger simulation.

- Time service.

- Reconstruction.

 Filtering (deconvolution) Wire regions of interest.

Clustering (cluster crawler and fuzzy cluster).

Tracking (including momentum determination).

Shower reconstruction.

Vertex reconstruction.



My Perspective on Testing

My perspective is largely colored by my experience with software
testing in DO since the fortran to c++ transition (~17 years).

 Modern testing terminology (as I understand 1it).

- Unit test — pass/fail test run on the smallest testable unit of code.

- Regression test — Seeks to track evolution of software performance
from version to version (not necessarily pass/fail).



Release Testing in DO

e In DO, we had two kinds of pass/fail tests (aka unit tests).

- Component tests.

- Integrated tests.

e Component tests.

- Mandatory, one component test per source file.

e The build system would annoy you with a warning if you didn’t provide a
component test.

- Invocation — “make ctest.”
- Interface.

e Developer was expected to supply a c++ main program that would call the
class or function being tested and return success or failure.

e Test factory was available for testing DO equivalent of modules without
firing up the full framework.

- A test factory for modules, services, algorithms would be useful.



Release Testing in DO 11

e Integrated tests.

- Optional.
- Invocation — “make itest.”

- Interface.

e Arbitrary script, which would typically run a framework program (but
could in principle do anything).

- Standard test data files were available, or developer could supply
his/her own test data.

- Since integrated tests ran during build, they couldn’t be something
that took a long time (hours).

e Script decides success or failure.

- To my knowledge, we never had an integrated test that did
anything as sophisticated as comparing histograms.

- Parsing log files — yes.



Release Testing in DO 111

« Component and integrated tests were available to be run, and were
run, by individual developers and in official release builds.

e Errors generated in official builds triggered e-mails to developers.



Regression Testing in DO

e RecoCert program.

- In larsoft terms, RecoCert was a framework program that would be
run on reconstructed data, which included an analysis module for
every reconstruction module.

Whenever a new reconstruction module was added in reconstruction
program, a new analysis module was added in RecoCert.

Result was a histogram file contained O(1000) 1D and 2D histograms
(about 50 pages when printed).

RecoCert histograms could be overlaid between two releases run on the
same input data.

- Performance judged by humans (not automatic, not pass/fail).

RecoCert histogram output was archived in sam (on disk and on tape)
for every version of the reconstruction program.

RecoCert output was also displayed online overlaid against known

good reference data.
10



I essons Learned

Unit tests should be integrated into the build system.

Errors in official builds should trigger e-mails or some other
action.

Testing interfaces should be flexible.

— It will be useful to be able to test classes/functions below the level of
modules, services, and algorithms.

- It will be useful to have test factories that will allow testing of
modules, services, and algorithms outside the art framework.

We (larsoft/microboone) need some kind of regression testing
framework. Probably this should be separate from build system.

- A regression testing framework would probably have some aspects
common among experiments, as well as some experiment-specific.
11



Summary

e Nightly build status.
e Overview of algorithm progress.

e Unit testing and regression testing in DO.

12



	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

