THE OPTICAL DETECTOR: A MICROBOONE PERSPECTIVE

WESLEY KETCHUM (LANL)

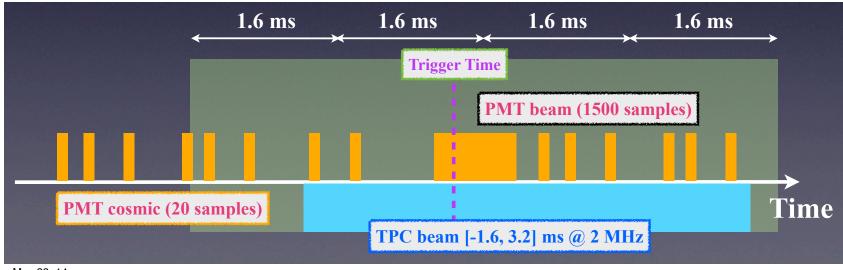
I am not the expert

- I didn't design the code
- I didn't write the code
- I didn't test the code (rigorously)

I know very little, beyond basic details, on the simulation side

SIMULATION

Get scintillation photons from LArG4


Full simulation

- Cerenkov and scintillation light
- Includes quenching, absorption, scattering, and reflection
- Takes a long time

Fast simulation

- Scintillation light only
- Assumes isotropic production, and uses lookup table to model response on each optical detector (PMT)
- LArIAT work on adding in effects of wavelength shifter

OPTICAL READOUT SIMULATION

ı, May 28, 14

Digitization

 OpDetDigitizer being replaced with uboone specific OpticalADCSim

PMT readout is not one long window like TPC

- Broken up into many smaller readout windows
- OpticalFEM being moved to uboonecode

DETAILS OF THE DIGI/READOUT SIM

Let me reiterate: not the expert

But uboone code now...

- Takes in data for non-PMT pulses in optical readout
 - Beam pules, and other auxiliary things
- Includes hooks for channel-by-channel variations in calibration parameters
- Includes all parameters matching uboone readout, with adjustments available via fhicl file
- All of this is in v02_01_00

End output: PMT waveforms

5

RECONSTRUCTION ALGORITHM

OpFlashFinder_module

- Reads in PMT waveforms and trigger info
- Creates OpHits (light on one PMT) and OpFlashes (light on multiple PMTs at same time)
 - Form optical hits from all pulses
 - Collect hits into proto-flashes (course)
 - Refine proto-flashes and ensure uniqueness among hits
 - Construct recob::OpFlash objects from proto-flashes
 - Remove flashes that are likely late light
 - Do bookkepping for making OpHit $\leftarrow \rightarrow$ OpFlash associations
- Code recently refactored and OpHit/OpFlash times modified to be in units of microseconds, relative to trigger time

FLASH-TRACK MATCHING

General idea

 Match tracks to flashes, and use flash-timing to give us out-of-time-tracks

Specifics: BeamFlashCompatibility_module

- Find flash during beam gate $(\rightarrow t_0)$
- Assume all tracks in event produced at t₀ and make "flash hypothesis"
 - Assume all tracks are MIPs for the moment
- Compare flash hypotheses to actual flash, and tag those that are inconsistent
 - Too much light on a PMT or as a whole

DISCUSSION