

Proudly Operated by Battelle Since 1965

Belle II Computing Overview

DAVID ASNER, DAVID COWLEY, KEVIN FOX, MALACHI SCHRAM, LYNN WOOD

Pacific Northwest National Laboratory 2015 Open Science Grid All-Hands Meeting

Belle II Collaboration

Proudly Operated by Baffelle Since 1965

CMS: 42 countries, 182 institutes, 4300 members ALICE: 36 countries, 131 institutes, 1200 members LHCb: 16 countries, 67 institues, 1060 members

Asia: ~45%

Japan:141 Korea : 36 Taiwan : 26 India:26 China: 19 Australia:21 N. America :~16% US: 72 Canada: 17

Mexico:8

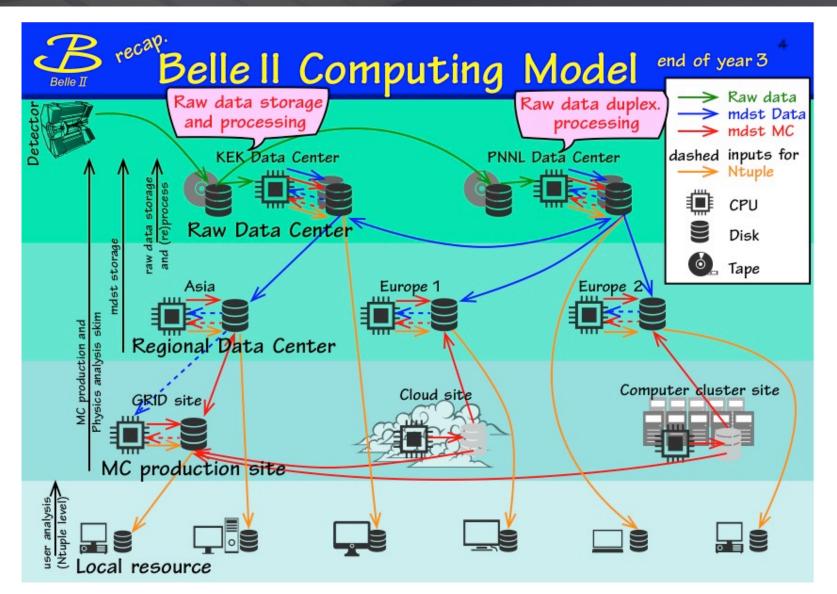
Europe : ~39%

Germany:88 Italy: 61 Russia: 38 Slovenia: 17 Austria: 14 Poland: 11 Czech rep.:7

others: < 5 colleagues / country

Belle II Computing Model

- The Belle II Computing model will manage in a geographically distributed environment the following main tasks:
 - RAW data processing.
 - Monte Carlo Production
 - Physics analysis
 - Data Storage and Data Archiving
- On going activities
 - Resource Estimation
 - Defining strategy for analysis and data distribution
 - Developing automated data replications and failover
 - Evaluating technologies



The Belle II Computing Sites are categorized as follow:

- Raw data Center: Stores the RAW Data and data processing and/ or data reprocessing
- Regional Data Center: Large data center that stores mDST and participates at the Monte Carlo production
- MC Production site: Data Center that produces and stores Monte Carlo simulations, that included:
 - Grid Site
 - Cloud Site
 - Computing Cluster Site

Belle II Distributed Computing Model

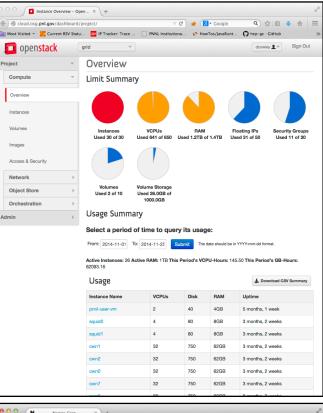
US Belle II Computing Operations

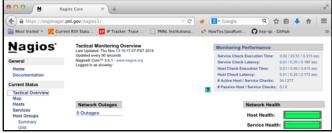
- Provide all required Belle II services for proper site operations
- Lead the Belle II networking and data transfer effort
 - Coordinate network connectivity between sites (LHCONE, etc.)
 - Lead network data challenges
 - Network monitoring
- Develop and deploy components of the Data Management System
 - Develop Belle II Storage Accounting System (B2SAS)
 - Develop automated data replications and failover system
 - Develop and optimize FTS3/DIRAC interface
- Develop and deploy the Distributed Database System
- Participate in Monte Carlo and processing/re-processing efforts

US/PNNL Role: 15% of Belle II Compute/Data

- "Each Belle II member institute provides... the computing resources to produce, store, and make available for analysis a fraction of the total simulated dataset... The fraction corresponds to the fraction of PhDs in the international Belle II collaboration"
- PNNL is ideally suited to provide this capability:
 - Office of Science Laboratory
 - Core capability in advanced computer science, visualization, and data
 - EMSL and ARM user facilities
 - Wide Area Network Connectivity via ESNet
 - Ability to draw on resources across organizational boundaries/disciplines
- Belle II Resources come from multiple entities
 - PNNL: Olympus nodes, Data Transfer Node, /pic filesystem space, 10 Gigabit WAN connectivity
 - US-Japan: Servers, Storage, Network switches
 - DOE: Labor, Hardware

PNNL Belle II Site Planning



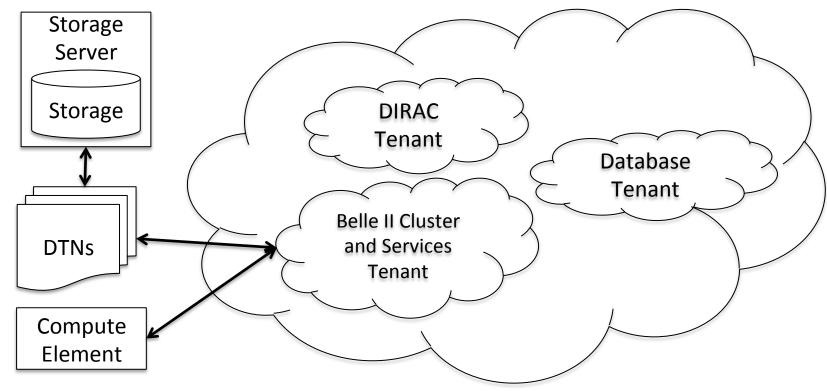

- Underlying infrastructure
- OSG Software Stack
 - Authorization Service
 - Compute Element
 - Worker Nodes
 - Storage Elements
- Other Software
 - DIRAC servers
 - CVMFS stratum-0 and clients
 - Squid servers
 - Conditions database services
 - FTS3 servers
 - perfSONAR servers and mesh

Established System Support

- Experienced computational staff matrixed to the project:
 - High Performance Computing Operations
 - Wide Area Networking
 - Database Design and Development
- Dedicated 10 Gbps LHCONE
- Shared 10 Gbps via Public Internet
- Set up Belle II data infrastructure
 - 175 TB storage capacity
 - Mixture of Lustre filesystem and CEPH distributed object store
- Implemented system administration infrastructure with monitoring and trouble ticket systems for Belle II

Established Software Stack

- Standardized on Scientific Linux 6 plus OpenStack private cloud technology for compute services
 - Enables rapid prototyping, development, testing, deployment of services
 - Increases flexibility, reliability of PNNL Belle II resources
 - Provides better utilization of compute resources by provisioning virtual machines
 - Job throughput (as reported by DIRAC) is twice that of the Olympus (PIC) system, using identical hardware
- Demonstrated that HEP jobs could productively be run in backfill windows on EMSL Cascade supercomputer



Creating a Private PNNL HEP Cloud

- Cloud tenants enable separation of production and development environments
- Current activities in development and testing on cloud tenants:
 - Grid services: CE, SE, Squid, CVMFS clients
 - Database: REST API, BASF2 Conditional Databases Services, CVMFS stratum-0
 - BelleDIRAC: Metadata catalog & distributed data system

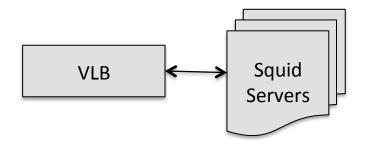
Compute Element

- Originally using OSG CE stack (push-method)
 - Interaction between DIRAC/OSG-CE is inefficient for job scheduling
 - Limited batch system support (Condor, PBS, LSF, and SGE are presently supported)
 - Using CondorHT for dedicated HEP cluster queue (grid & local use)
 - Previous updates removed site specific configurations
- Migrate to DIRAC SiteDirector (pull-method)
 - Quick solution to increased job scheduling efficiency (nearly 100%)
 - Developed for SLURM batch system support for PNNL HPC resources
 - Easier to get cyber security approval
- We are re-visiting OSG CE stack to provide opportunistic compute cycles to OSG community

Using OSG WN stack

- Worker nodes are launched on our private OpenStack cloud
- Using heat templates to configure/launch node in cloud
 Base heat template and/or VM images from OSG?
- Using CVMFS client to access experiment repos (Belle II, ILC, and other HEP experiments)
 - Proxy through a local load balanced Squid farm
 - Access remote and local CVMFS stratum-0 and stratum-1

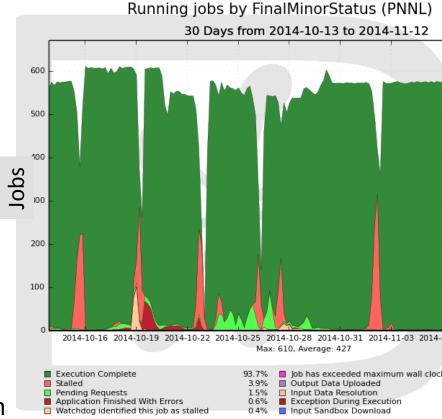
Storage Element



- Using Lustre backend file system
- Initially using Bestman2, however, problems:
 - Randomly unresponsive
 - Adler-32 support not working properly
 - Updates overrides existing configurations files
 - Unclear how to scale system: stateless vs. stateful information
 - No response from developers
- Investigating Storm SE
 - Clear stateless/stateful separation for scalability
 - Support Adler-32 out of the box
 - Active development and quick response

Other Services

- Squid farm behind a Virtual Load Balancer
 - Common external hostname
 - Several modes to load balance
- CVMFS Stratum-0 at PNNL
 - Belle II conditional database payload repository
 - Other HEP experiments software (superCDMS, MiniCLEAN, etc.)
- File Transfer Service 3 (FTS3)
 - Used for mass data transfers
 - Clear stateful/stateless separation for scalability
- PerfSONAR server and mesh
 - Used for network monitoring
 - perfSONAR servers are online
 - Dedicated Belle II perfSONAR mesh is ready for testing

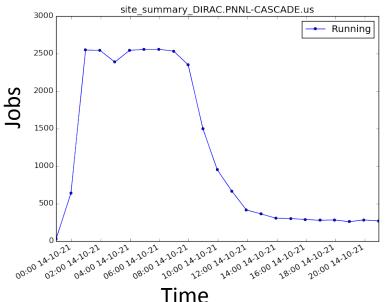


Belle II MC4 Monte Carlo Campaign Successful

September 22 – November 7 2014

- Typically ~576 jobs running
- PNNL Belle II Grid Site contribution:
 - 24 compute nodes
 - 90,102 jobs
 - 22,128.3 Wall Clock Days
- PNNL Cascade Supercomputer contribution:
 - 63,132 jobs
 - 5,804 Wall Clock Days
- Issue: periodic job stalling events.
 - Cause: aggressive port scans by PNNL's own cyber security organization
 - Fix: get them to turn down intensity

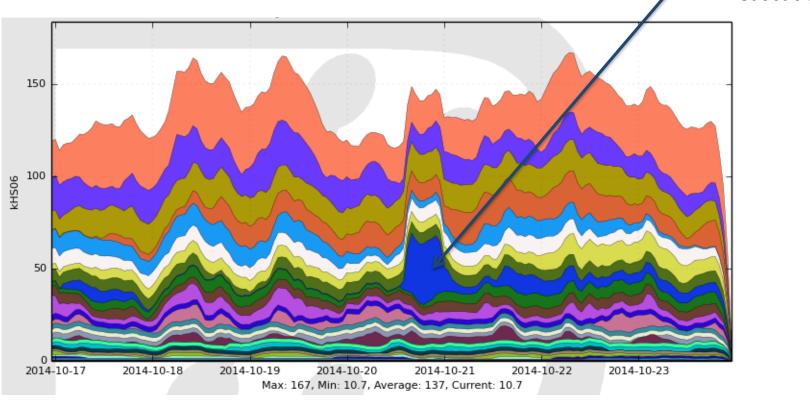
Enabling Opportunistic HPC Computing for HEP


Proudly Operated by Baffelle Since 1965

- Ideal resource for stressing the distributed system while delaying procurements of dedicated resources
- PNNL has several large clusters (e.g. Cascade, etc.)
- We setup a gateway node on Cascade to provide gateway services for HEP computing (ATLAS/Belle II)
 - NAT through gateway node allows Cascade nodes

to talk to selected HEP sites

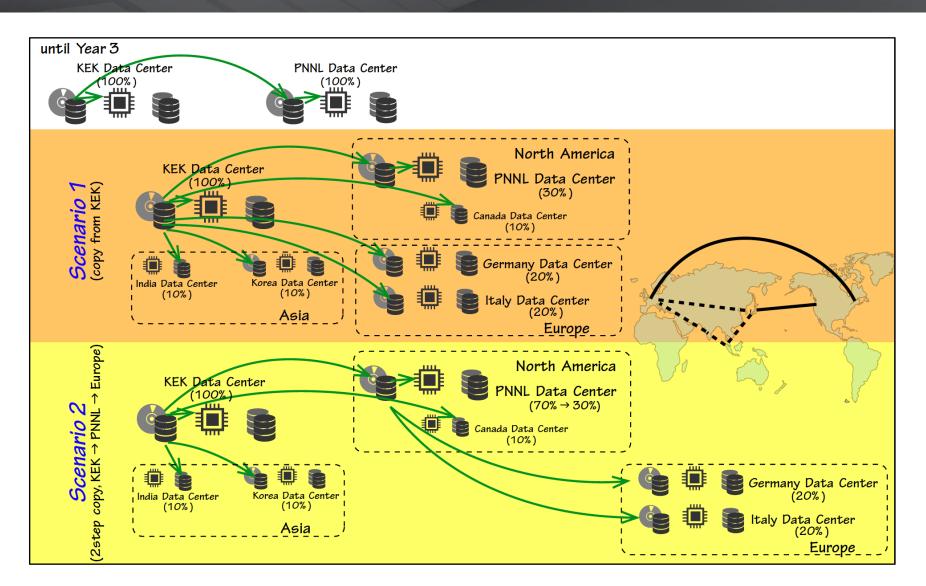
- Appropriate firewall changes were made
- OSG client software was integrated into Cascade node image
- Developed Belle II DIRAC SLURM Site Director agent (submitted to DIRAC developers)
- New queue was setup on Cascade to allow multiple single-core jobs to share a compute node
- Approximately 10% of the available CPU on Cascade was used at one time (>20kHEPSpec)


- Goal: Demonstrate that HEP jobs can run in "backfill" windows on parallel supercomputers
- 20,000 node hours allocated on PNNL/EMSL Cascade supercomputer
- DIRAC Site Director, Squid, and CVMFS set up on an ancillary Cascade node
- Cascade queuing policy adjusted to:
 - Create "Shared" queue that allowed more than one job on a node
 - Not clean the entire compute node when a job completed

HEP on HPC Lessons learned

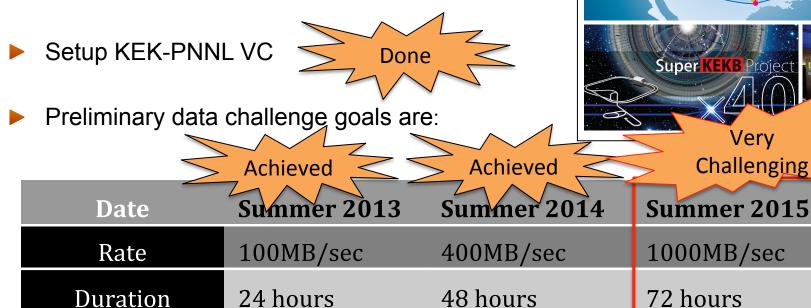
PNNL Cascade

- HEP workload can backfill very effectively between large parallel jobs!
- HEP jobs need to be tailored to fit well on parallel HPC systems
- Opportunities:
 - Run multicore jobs
 - "Right-size" job length for the target system


Networking & Data Transfer System

- Latest network requirements for Belle II estimates a total of 35Gbps in/out at designed luminosity
 - Does not include user analysis
- FTS3 Server:
 - Previously used for Data Challenges and performance studies
 - Requires continuous studies of the FTS3 transfers to tune the channels as needed (FTS3 optimization not perfect yet)
- DIRAC Integration:
 - Prototype Belle II FTS3 DIRAC Agent was developed to automate the Data Challenges and to gain experience with DIRAC/FTS3
 - Working on doing DIRAC transformation using FTS3
 - Monitoring and tuning distributed computing data transfers will be vital to stable operations
 - Using WLCG FTS3 Dashboard, however, we should move to DIRAC monitoring
 - We will deploy Belle II perfSONAR mesh this spring to provide automated network monitoring

Belle II Raw Data Distribution



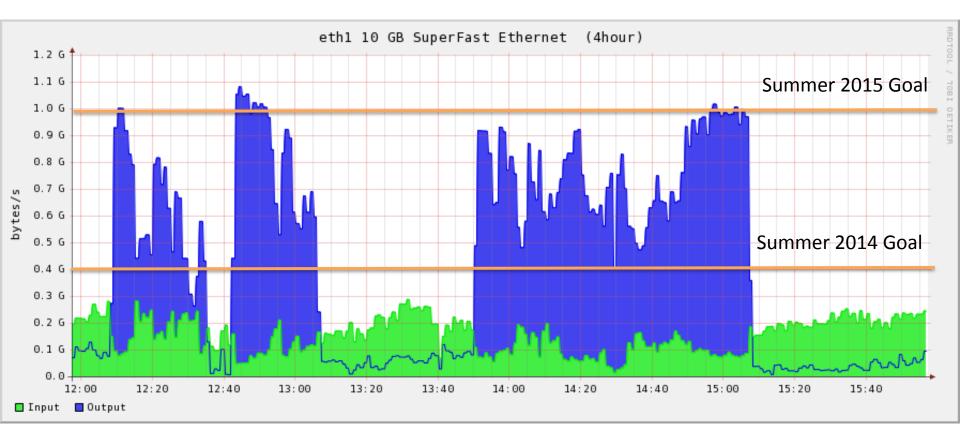
Goals Achieved based on Pacific Network and Computing Requirements

- The purpose was to address the wide-area networking requirements for science in general and of the Belle II experiment in particular.
- Report can be found at:

http://www.es.net/assets/pubs_presos/Belle-II-Experiment-Network-Requirements-Workshopv18-final.pdf

Various goals were defined, for example:

Belle-II Experiment Network Requirements


Belle-II Experiment Collaboration Energy Sciences Network

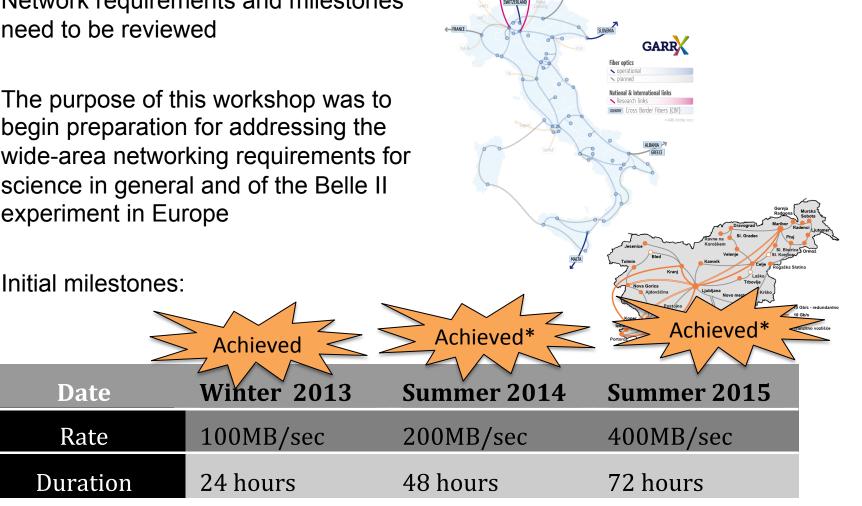
October 17-18, 2012

Higher Data Transfer Rates Achieved using File Transfer Service 3 (FTS3)

Tuning FTS3 allowed us to reach ~8.8 Gbps transfer rates from PNNL to KEK

Load balanced cloud implementation is currently being tested

Pacific Northwes

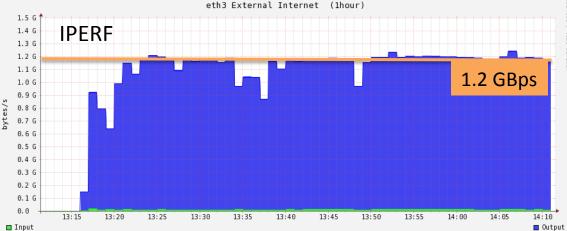

NATIONAL LABORATORY
Proudly Operated by Battelle Since 1965

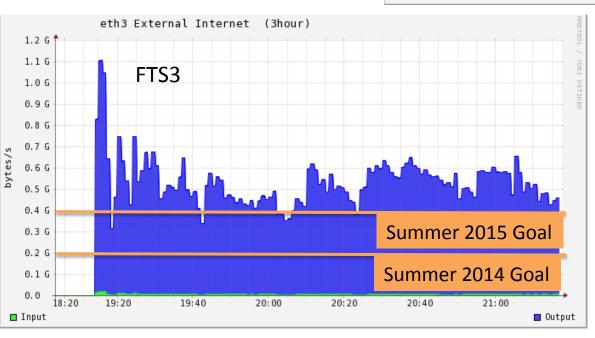
Goals Achieved based on European **Networking Workshop**

Proudly Operated by Battelle Since 1965

- Network requirements and milestones need to be reviewed
- The purpose of this workshop was to begin preparation for addressing the wide-area networking requirements for science in general and of the Belle II experiment in Europe

2015 Open Science Grid All-Hands Meeting


*Using ANA-100 link


Trans-Atlantic Goals Achieved using Belle II ANA-100 Setup

Pacific Northwest

Proudly Operated by Battelle Since 1965

- First few days we conducted tests using <u>IPERF</u> for true network testing
- Required several parallel transfers to reach network saturation

- Transitioned to FTS3 server
- Reached network saturation but rates fell very quickly
- Large amount of dropped packets

- ► The network requirements for Belle II are similar to the LHC experiments.
- Most Regional Data Centers are already part of LHCONE
- Belle II presented the computing/networking requirements at LHCONE Meetings
 <u>LHCONE Asia-Pacific Workshop Nantou, Taiwan, 13 August 2014</u> (presented by Takanori Hara)

 LHCOPN-LHCONE Meeting - Ann Arbor, Michigan, Sept. 15-16th 2014 (presented by Malachi Schram)

- LHCONE agreed to add Belle II at the Ann Arbor meeting
- New LHCONE Acceptable Use Policy explicitly includes Belle II: <u>https://twiki.cern.ch/twiki/bin/view/LHCONE/LhcOneAup</u>

Connecting PNNL, KEK, and LHCONE (Setup to stay in place thru June 2016)

27

- KEK-PNNL VC transfer tests are ongoing
- Debugging LHCONE connection
- One dedicated Data Transfer Node

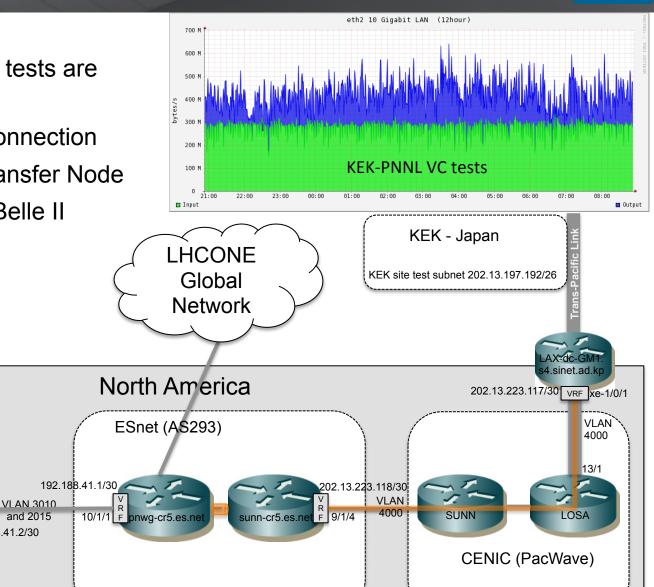
PNNL-CE2

(VRF)

R

192.188.41.2/30

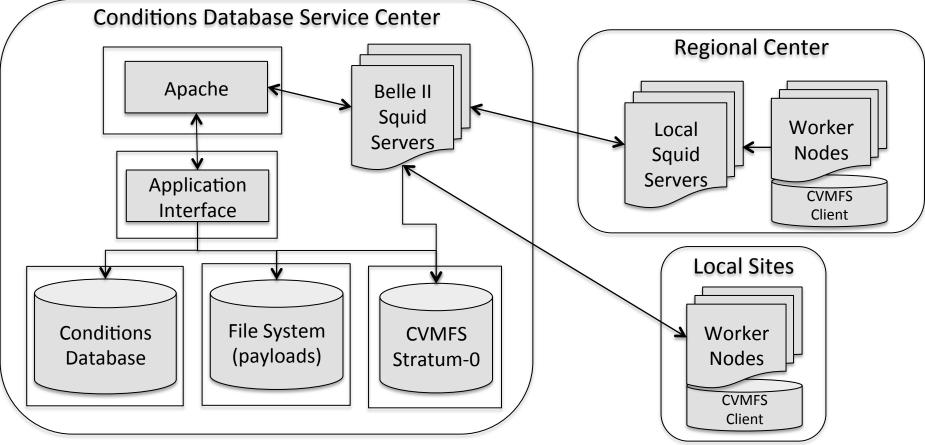
2015 Open Science Grid All-Hands Meeting


Moving other DTNs to Belle II dedicated network VC

PNNL (AS65428)

Gateway: 198.129.43.1

PNNL site test subnet 198.129.43.0/24

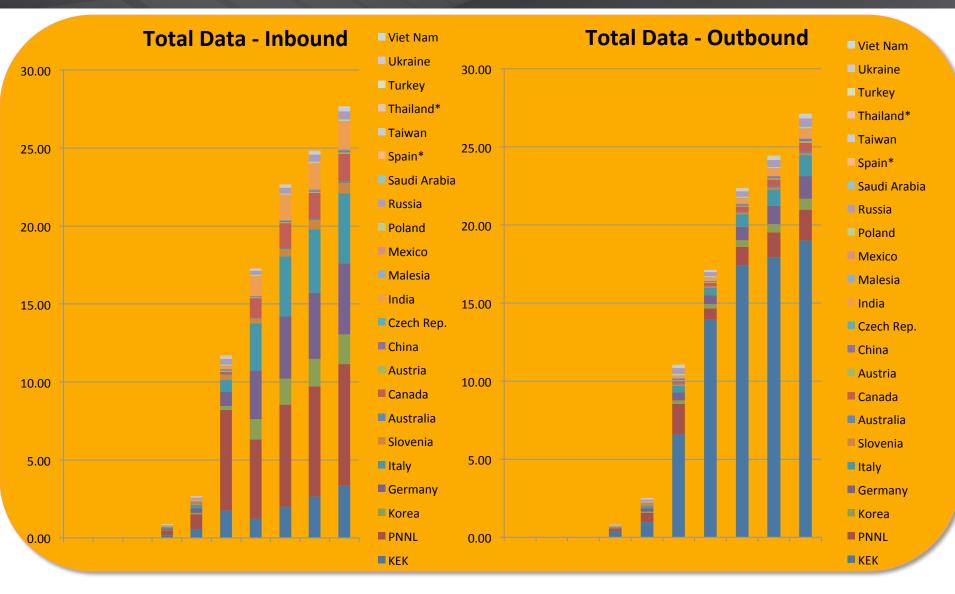

March 24th. 2015

PNNL Distributed Database Testbed

- PNNL was explicitly requested by Belle II spokesperson and the computing and software coordinators to lead the Belle II database effort
- Provided a plan and the infrastructure to test the distributed database effort
- Belle II effort is being developed within a dedicated cloud tenant at PNNL

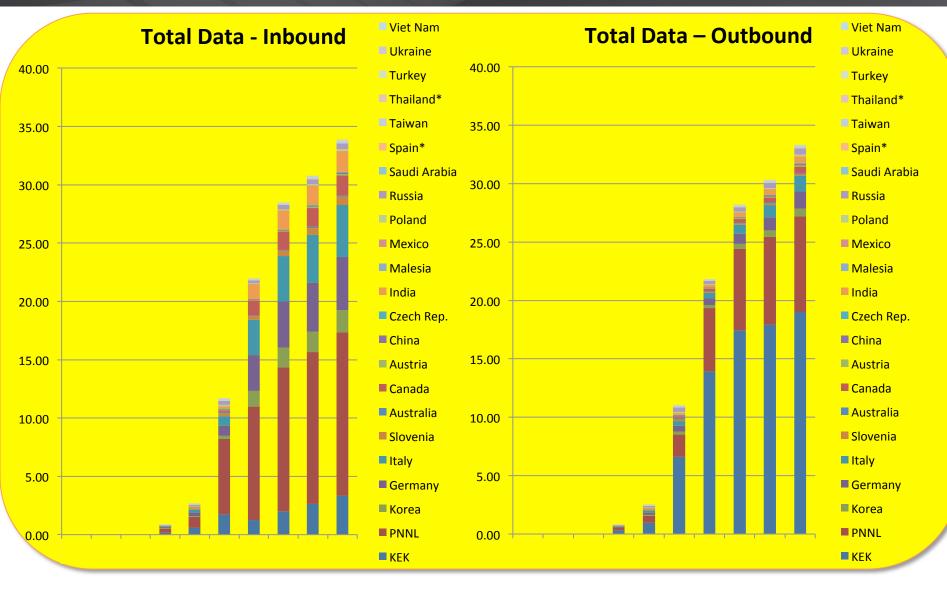
- Belle II Computing requirements are very similar to those of the LHC experiments
- PNNL is the led US laboratory and the primary off site computing center providing numerous grid services
- PNNL computing infrastructure is based on Cloud technology
 - PNNL has deployed several OSG software stack
 - Experienced problematic upgrades that overwrite site configurations
 - Will OSG provide Cloud templates or VM for grid services in the future?
- Example comments from Belle II University member:

"What we found was that setting up a new CE or SE from scratch is actually quite difficult; at some point we needed a dedicated person either on-site or off-site to help us, at least until the set-up was complete."



Proudly Operated by Battelle Since 1965

Backup Slides


Belle II Total Data Network Requirements Scenario 1

Pacific Northwest

Belle II Total Data Network Requirements Scenario 2

Pacific Northwest

Summer 2014 Networking Goals Achieved

- Transfer rate from KEK to PNNL during 48hr stability test met summer 2014 goal (>400MBps)
- Transfer rate from PNNL to Germany during 24 hr stability test was >100MBps

Setting Up Belle II ANA-100

MANLAN

Exchange

Brocade

MLX

VLAN

3011

100G

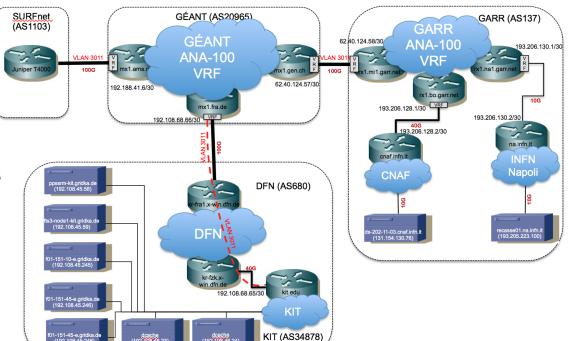
NAN3011

aofa-cr5.es.net

192.188.41.5/30

Forschungsnetz

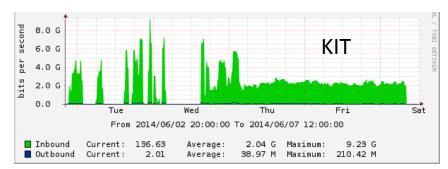
ESnet (AS293) (AS65428) (AS65428) (AS65428) (AS65428) (AS65428) (I92.188.41.2/30 (192.188.41.2) 100 PNNLet 3011 100 PNNL site test subnet 192.188.41.1/30

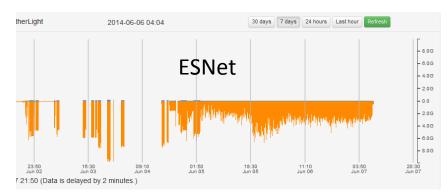

- Network Setup:
 - Network providers (Geant, ESnet, GARR, DFN) setup the VLAN
 - Local network providers and sites coordinated final configurations
 - Sites must configure hardware interface to match destinations
- Testing Tools:
 - Traceroute was used to confirm the routing to each Data Transfer Nodes (DTN)
 - Iperf was used to do initial network transfer rate tests
 - gridftp and/or srm-copy was used to test site
 - FTS3 server at GridKa was used to schedule data transfers

Goal

Dates:

- Test the ANA-100 Trans-Atlantic link
- Test/tune/profile the performance of current Belle II data transfer tools


June 2nd to 6th use dedicated VLAN

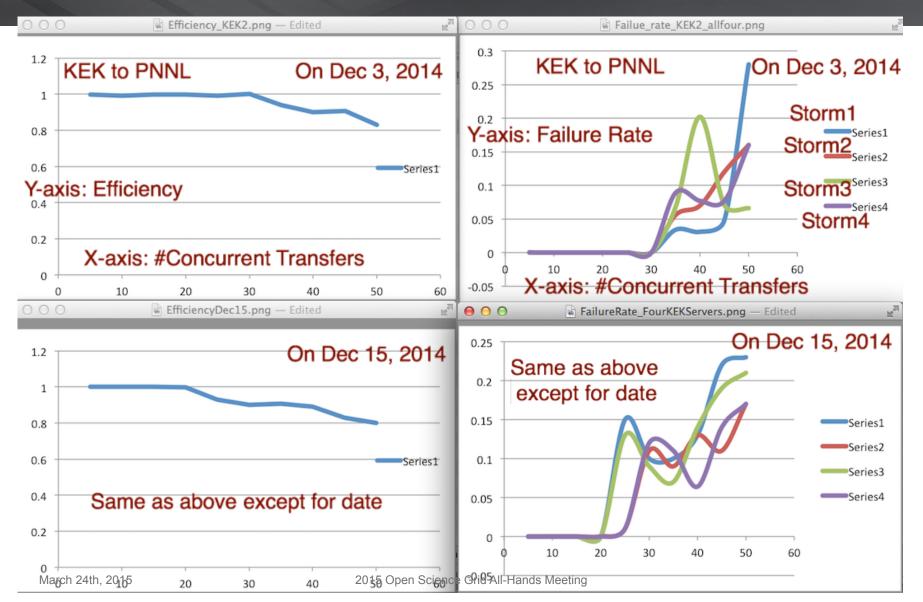

Belle II ANA-100: Lessons Learned

- Challenges encountered:
 - The main issue was the configuration of the local network apparatus
 - Having all the servers at each site using/ checking the proper network route
 - Hardware limitation (router, storage, etc.)
 - Not having dedicated setups (shared with ATLAS, etc.)
- Modification to sites to accommodate the increased rates:
 - Modification of TCP windows was performed at PNNL and Italy
 - Routing hardware interface
 - Configure/tune network interrupts for multicore
 - Modification of the FTS3 optimization

Sites and Data used for File Transfers

Proudly Operated by Battelle Since 1965

Sites:


- KEK2 <u>kek2-se01.cc.kek.jp</u>
- PNNL <u>se.hep.pnnl.gov</u>
- KIT gridka-dcache.fzk.de
- DESY <u>dcache-se-desy.desy.de</u>
- UVIC <u>charon01.westgrid.ca</u>

Setup:

- All Regional Data Centers except KEK are now using LHCONE
- ~100 files with each file ~10 GB => This implies ~1 TB of data
- Each SE will temporarily require 2 x 1 TB of disk space
- Each SE has:
 - SE-Path>/belle/DC2014/in
 - SE-Path>/belle/DC2014/out
 - All previous files were deleted from belle/DC2014/ using srmrm command.
- 5x4 FTS3 transfers are initiated for 5 sites with each job assigned 20 files
- Channels are configured using fts-config-set + json

Transfer Efficiency & Failure Rate: From KEK to PNNL

WLCG FTS3 Belle II Dashboard

0 %		TOTAL-	charon01.westgri	dcache-se-desy.d	gridka-dcache.fzl	kek2-se01.cc.kek	se.hep.pnnl.gov+
DESTINATIONS	TOTAL-	98 % 1 GB/s 8498 130	100 % 182 мв/s 1374 2	98 % 309 мв/s 2322 52	99 % 207 мв/s 1554 9	97 % 238 мв/s 1787 51	99 % 195 мв/s 1461 16
	charon01.westgrid.ca+	97 % 19 мв/s 140 4		97 % 13 мв/s 95 3	100 % 546 kB/s 4 0	100 % 4 MB/s 27 0	93 % 2 MB/s 14 1
	dcache-se-desy.desy.de+	99 % 303 мв/s 2288 29	100 % 51 MB/s 384 0		99 % 79 мв/s 597 6	97 % 93 _{MB/s} 694 19	99 % 81 MB/s 613 4
	gridka-dcache.fzk.de+	91 % 113 мв/s 852 83	95 % 5 мв/s 36 2	92 % 64 мв/s 486 45		87 % 23 мв/s 173 25	93 % 21 MB/s 157 11
	kek2-se01.cc.kek.jp+	100 % 368 мв/s 2732 2	100 % 61 мв/s 455 0	100 % 145 мв/s 1080 0	100 % 70 мв/s 520 2		100 % 91 мв/s 677 0
	se.hep.pnnl.gov+	100 % 328 мв/s 2486 12	100 % 66 мв/s 499 0	99 % 87 мв/s 661 4	100 % 57 мв/s 433 1	99 % 118 мв/s 893 7	