
David Champion • University of Chicago

Open Science Grid All Hands Meeting
Northwestern University
March 24, 2015

The Campus Client

Connecting campus researchers to the OSG

Open Science Grid

● A distributed computing partnership for data-
intensive research

● 140+ resource providers in the Americas

OSG: 140 sites

OSG: 140 sites

OSG: 140 sites

OSG: 140 sites

OSG: 140 connected sites...

OSG: 140 connected sites...

But where are the users?

OSG: 140 connected sites...

But where are the users?

On campuses everywhere!

Points of opportunistic entry

…
Image credit: Chander Sehgal

How do we provide access to OSG?

● OSG Connect login
● OSG Direct
● OSG XD (XSEDE allocation)
● Various campus grids

○ CHTC / GLOW
○ Baker Lab
○ Duke Connect
○ ISI…

Is this enough?

Proximity of users to OSG resources

It depends!

Independent users are largely satisfied...

It depends!

...but users of campus resources may be stymied.

What’s wrong?

Problem: campus grid users are sheltered within
a fully functional ecosystem.

● Local standard configuration
● Local standard data management
● Local standard software access tools
● Local support structure

○ May be less welcoming of obvious institutional

interdependence than those of us who work in OSG.

○ “You want my users to do what? At the University of

where?”

What can we do about this?

Idea: A campus Connect Client to bridge the gap
between the campus resource and the national
grid gateway.

The Connect Client will co-locate key parts of the
interaction within a user’s own environment. She
can take on the usual OSG entry points at her
own readiness, but still use the grid before that.

Connect Client bridge

No longer need to “escape” the campus grid
environment — at least, not overtly.

What is the Connect Client (v1)?

We started with Bosco.

● Campuses do not want to admin HTCondor
● Users do not want a new submission platform
● Bosco lets your desktop or laptop mimic an

HTCondor submission node using SSH and
BLAHP

➠ So let’s make a client toolset around Bosco,
giving each campus grid user a personal Condor
system on their home cluster.

Local setup / installation

● Installs as a module for sites that use them.
● Managed by site admin — no download &

install steps for user (can be installed by user if necessary)

● Commands:
○ module load connect
○ connect setup
○ connect addsite login.osgconnect.net
○ bosco_start
○ condor_submit
○ condor_etc…
○ bosco_stop

Simple?

Not too bad. The
HTCondor/Bosco
stack works, of
course.

There’s a little
management
overhead for
users: starting
Bosco, shutting
down Bosco when
not in use.

Users can locally:

➔ manage data
➔ submit jobs
➔ monitor jobs
➔ collect results

… all using
standard HTCondor
commands.

Scalable?

No:
● 7 long-running

processes, ~340 file
descriptors (idle)

● condor_shadow
processes with vanilla
universe

● limited data
management with
grid universe

● easily outscales the
intended design of
the typical HPC login
node.

Scalable?

Running the full HTCondor submit node stack per
user turns out to cost a lot of overhead.

● Assorted memory problems with the Bosco
supervisor (runfactory)

● Heavy impact from Condor processes,
especially condor_shadow

● Local site admins routinely needed to kill
users’ Bosco/Condor stacks. (Memory and
CPU use inconveniencing other users.)

Back to the drawing board

What we need is a lightweight Connect Client:

● No large software stacks
● No long-running supervisors
● Able to interact with and exchange files with a

full-fledged OSG submission node (e.g.
login.osgconnect.net)

● Transparent access using established
credentials

● Feel like a natural part of the local platform

What is the Connect Client (v2)?

OSG Connect encapsulates many common but
unique operations under the connect command:

● connect status
● connect watch
● connect histogram
● connect project

So we have an umbrella tool for Connect
interactions already!

What is the Connect Client (v2)?

Connect Client adds connect remote:

● connect remote setup
● connect remote pull / pull / sync
● connect remote submit
● connect remote q
● connect remote history
● connect remote rm
● connect remote status
● ...

Command summary

● connect remote setup
○ one-time authorization setup. Creates a new SSH key

pair and uses your password to authorize it.
○ connect remote test can validate access at any time

● connect remote push / pull / sync
○ lightweight access means no supervisors can monitor

file readiness for transfer

○ instead, we have explicit commands for uni- or bi-

directional file synchronization between local and

remote (the “connected” server). The sync occurs over

a secure SSH channel.

Command summary

● connect remote submit
○ like condor_submit, submits a job from a job control file

(submit script). Implicitly performs a push beforehand.

● connect remote q
○ runs condor_q remotely

● connect remote history
● connect remote status
● connect remote rm

○ also condor_* wrappers

Command summary

● Very straightforward, very simple. Adding
wrapped commands is trivial. Bracketing those
commands with file sync is also trivial.

● No intention to simply replace “ssh server”. We
want to limit access to make the remote
capability more direct, more like an extension
of the local service. (Advanced users can get
regular login accounts.)

Short-term future development

● all necessary capabilities of the base connect command
should become available as remote commands.

● only a priori knowledge is server user@host. Other
configuration/metadata should be retrieved on demand.

● file synchronization is currently SFTP-based. Smarter file
sync (e.g. rsync) should be possible.

● other remote data access support as appropriate

● needs connect command on server; eliminate this
requirement

Demonstration

[402/0]$ module list

Currently Loaded Modulefiles:

 1) vim/7.4 3) emacs/24 5) use.own

 2) subversion/1.8 4) env/rcc 6) slurm/current

[403/0]$ module avail connect-client

--------------------------- /home/dgc/privatemodules ---------------------------

connect-client/1.1

---------------------------- /software/modulefiles -----------------------------

------------------------------- /etc/modulefiles -------------------------------

[404/0]$ module load connect-client

[405/0]$ connect

usage: connect <subcommand> [args]

 connect remote

Demonstration

[406/2]$ connect remote

usage: connect remote <subcommand> [args]

 connect remote history <condor_history arguments>

 connect remote pull [[localdir] remotedir]

 connect remote push [[localdir] remotedir]

 connect remote q <condor_q arguments>

 connect remote rm <condor_rm arguments>

 connect remote run <condor_run arguments>

 connect remote setup [--replace-keys] [servername]

 connect remote status <condor_status arguments>

 connect remote submit <submitfile>

 connect remote sync [[localdir] remotedir]

 connect remote test [servername]

 connect remote wait <condor_wait arguments>

Demonstration

[407/0]$ connect remote q dgc

error: SSHError: No key file available.

error: Did you run "connect remote setup"?

[408/10]$ connect remote setup

Password for dgc@login.osgconnect.net:

notice: Ongoing remote access has been authorized at login.osgconnect.net.

notice: Use "connect remote test" to verify access.

[409/0]$ connect remote test

You already have remote access to login.osgconnect.net. There is no need to run setup.

[411/0]$ tutorial quickstart

Installing quickstart (osg)...

Tutorial files installed in ./tutorial-quickstart.

Running setup in ./tutorial-quickstart...

Demonstration

[412/0]$ cd tutorial-quickstart

[413/0]$ ls

total 192

32 log/ 32 short.sh* 32 tutorial02.submit

32 README.md 32 tutorial01.submit 32 tutorial03.submit

[414/0]$ connect remote submit tutorial01.submit

notice: sending README.md as tutorial-quickstart/README.md...

notice: sending short.sh as tutorial-quickstart/short.sh...

notice: sending tutorial01.submit as tutorial-quickstart/tutorial01.submit...

notice: sending tutorial02.submit as tutorial-quickstart/tutorial02.submit...

notice: sending tutorial03.submit as tutorial-quickstart/tutorial03.submit...

notice: sending log/.gitignore as tutorial-quickstart/log/.gitignore...

Submitting job(s).

1 job(s) submitted to cluster 7062512.

Demonstration

[415/0]$ connect remote q dgc

-- Submitter: login01.osgconnect.net : <192.170.227.195:56133> : login01.osgconnect.net

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

7062512.0 dgc 3/23 23:50 0+00:00:00 I 0 0.0 short.sh

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

[416/0]$ connect remote q dgc

-- Submitter: login01.osgconnect.net : <192.170.227.195:56133> : login01.osgconnect.net

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

Demonstration

[417/0]$ connect remote pull

notice: fetching tutorial-quickstart/README.md as README.md...

notice: fetching tutorial-quickstart/short.sh as short.sh...

notice: fetching tutorial-quickstart/tutorial01.submit as tutorial01.submit...

notice: fetching tutorial-quickstart/tutorial02.submit as tutorial02.submit...

notice: fetching tutorial-quickstart/tutorial03.submit as tutorial03.submit...

notice: fetching tutorial-quickstart/job.log as job.log...

notice: fetching tutorial-quickstart/job.output as job.output...

notice: fetching tutorial-quickstart/job.error as job.error...

notice: fetching tutorial-quickstart/log/.gitignore as log/.gitignore...

URLs

Connect client

 https://github.com/CI-Connect/connect-client/tree/lightweight

OSG Connect

 https://osgconnect.net/

https://github.com/CI-Connect/connect-client/tree/lightweight
https://osgconnect.net/

