StashCache;
Data Services for the
0OSG

Brian Bockelman,
On Behalf of the StashCache Team

Background

* The two large LHC VOs, ATLAS and CMS, own storage at many OSG sites
and use them as storage elements, or remotely accessible file systems.

 These SEs behave like - and are operated like - POSIX filesystems.

e For each POSIX command (cp, Is, mv, rm), there is an equivalent
command for the SE. For the SRM protocol, for example, srmcp, srmls,
srmmy, srmrm.

* The SE abstraction is very low level!

 Managing data is analogous to having a login to 50 clusters.

* Or copying files manually between your work desktop, laptop, phone,
and home desktop.

Background

* How is data handled in the SE paradigm?

» Access: Each SE has its own twist on data access. Either hardcode access rules locally

(yuck!) or come up with a standard site discovery mechanism (far less successful than
hardcoding!).

 Movement: A service is given a set of files from endpoint A to endpoint B. The files are
usable once files are at endpoint B.

» Catalogue: Some central service tracks the location of each file.
» Catalogs must be kept in sync for this to work!

» Data management. Rules engine verifies that all files are in the “correct” location according to
some set of rules. If not, make new copies with the movement service.

» Data lost? Site initiates a recovery procedure. In CMS, the site admin opens a ticket.
e |tis assumed this is an exceptional event which does not happen frequently.

e |f afile is not in the correct location, it can be considered an error.

Votivation

Opportunistic Computing is like giving away empty
airline seats; the plane was going to fly regardless.

Opportunistic Storage is like giving away real
estate.

(paraphrased from Mike Norman)

Votivation

* Using the SE paradigm has been a colossal failure tfor opportunistic VOs.
« Systems for CMS and ATLAS are robust and efficient, but proven
impossible for others. Cost of management is too high and
opportunistic VOs are unable to command site admin time.

» Key to this failure is the underlying assumption in the SE paradigm that file
loss Is an exceptional event.

* Again, “Storage is like real estate.”

* To be successful, opportunistic storage must treat file loss as a
everyaday, expected occurrence.

* The lack of high-speed local storage significantly decreases the range
of workflows opportunistic VOs can run on the OSG.

A Different Paradigm:
Caching

« Afile is downloaded locally to the cache from an origin server on first access.
e On future accesses, the local copy is used.

« When more room needs to be made for access, “old” files are removed (by
some algorithm which decides the definition of “old”).

 Downsides:
« Caching is only useful is the working set size is less than the cache size.

« Otherwise, the system performance is limited to the bandwidth of the
system feeding the cache.

« Working set size is difficult to estimate for multi-VO.

* Not all workflows are supported. This does not work well if files need to be
modified.

Hypothesis: A significant number of opportunistic workflows
have cache-friendly access patterns

Why Caching?

« Compare to caching:

Access: All endpoints in infrastructure have same data access
method.

Movement: It files are not local, they are moved in on-demand.

Catalogue: All tiles are assumed to be at the “origin server”. We
do not need to track any other location information.

Data management. Custodial copy of all files are at the origin; no
other explicit work is needed by VO.

* More resilient against failures, less work to do. Sites can reclaim
storage at any time (or other users can take it!)

Where Do We Use Caching
Today”

* Most sites have a local HTTP cache for for the Frontier application and/or
CVMES.
Why not use that?

« HTTP cache deploys have been sized to match the ~1GB working set
size of these use cases.

» Caches are typically sized/restricted to serve the local site.

e Qur target is 5GB-5TB working set sizes for tasks.

« We’'d also like to have zero service requirements for the local sites.
 CVMFES can have a light footprint, but it's not zero.

» Further, we need to redesign caches for much larger working set size.

Big ldea:
Can OSG provide a caching
service for opportunistic VOs?

Introducing StashCache

Caching infrastructure based
on SLAC Xrootd server &
xrootd protocol.

[OSG-Connect]

Each VO has a origin server. R e '

Cache servers are placed at
. Cachin Cachin

several strategic cache R

locations across the OSG.

Caching
Proxy

Caching
Proxy

Job Job

——» Download

Jobs utilize "nearby” cache, —
for some definition of nearby.

Oriainal Architecture

StashCache locations & compute sites

= ?‘ ¥ , DNorth
shi (50T ‘Montana akota j
Sta S h .Wf;hmgton . SN 8o) g Minnesota
> ! ! 7. ‘j’:!"‘ y "f A,

- oy ! ,'.’ F)
Al N SN) =
] . -~ Oregon TR J o Mighiigan
. - idaho - iR~ - . ¢
. el , | Mréyoming N '
A vije , Sy loww L\ ¥ p
o g S A o q y " Penns)’ s
S - . / | - ¢ J Hine Ohijo
—‘li b 4 . Nevada ’ ’ ’ J !. na a
- # Utah ¥ _ Scolorado . A
', | l"“ . o an F

| L 8 7 l TCI\) #
OS G > Ok ::'na Arkansas Q
1 rizona .

o
3\/ o o v wisslbpi Carolinal Disthictof
C a C h e S ° P b s v , \) A'ab.maseorgia q,g-‘“ Columbia
[] ¢\ 4 - \ : _E:

. :]
Loui S th . '
i .,*J "3
: S : ,-‘y Flor‘
ou" d ‘} X _ :

California o . g Gulf of
. U o | . Mexico J

Slide by Anna Olson (https://indico.cern.ch/event/330212/
session/6/contribution/31/material/slides/0.pdf)

https://indico.cern.ch/event/330212/session/6/contribution/31/material/slides/0.pdf

Scale and Scope

The possible origin servers are limited to OSG VOs.

e During the pilot phase, we have a single origin server (OSG-Connect).

- No service requirement for each site.

Each cache has minimum size (>10TB) and performance (10Gbps to
WAN).

* This allows us to provide reasonable lower bounds on acceptable
working set size.

Scale system so it can support ~10k running jobs.

Scope of the system is limited to data stage-in, not stage-out.

Data Access Methods

» Xrootd is not a familiar protocol for users. Goal is to provide reasonable Uls to VOs; users don'’t care about
protocols, they care about interfaces.

* This means application protocol is implementation-defined; if protocol B is more relevant in 3 years, we
can use that.

e C.f., accessing “google.com” from Chrome does not use HTTP. Few users seem to care as long as the
browser (the interface) works.

* To upload files, VOs can provide users with a writeable shared filesystem exported by the origin server.
* Users first must “cp” their data to this mount point, then can access the files from their jobs.

* Top-level directory name is assigned to VO by OSG; VO manages the namespace within their directory.

* User interfaces:
» “cp’-like
« HTCondor file transfer

¢ POSIX

http://google.com

‘cp -like

All glideins are instrumented with to have “stashcp” in the $PATH.
stashcp emulates the CLI of venerable POSIX “cp”.

Users simply say:

e stashcp stash:/user/bbockelm/foo $PWD

Note no implementation details exposed!

Summary of use statistics, performance, and errors encountered
are injected back to HTCondor ClassAd.

* All Stash usage becomes query-able with condor_history:.

HTCondor File Transfer

* The workflow system (here, HTCondor) can manage file transfers
directly.

e The pilot configuration provides a callout script for handling a
given URL type. Underneath, this is implemented using stashcp.

« Using HTCondor file transfer plugins provides a mechanism for

concurrency management, policy-based retries, and removes
need for error handling in user jobs.

« HTCondor understands “file transfer failed” semantics directly.

e Users add the following line to their JDL:

 transfer_input_files = stash://user/bbockelm/foo

stash://user/bbockelm/foo

POSIX

‘'stashcp’ and HTCondor file transfer plugins require the entire file to be downloaded locally.

* Not all worker nodes have large enough scratch disk.

These ‘cp’ like interfaces can be difficult for applications which do not know what files will
be read - or require complex directory structures.

Using a LD_PRELOAD library from the Xrootd team, we can make StashCache appear to be
a POSIX filesystem to the application.

* As many applications perform small reads, it uses the local filesystem as a cache for
accessed portions of the file.

o All “normal” POSIX utilities and APIs will work (think “Is”, “cat”, “tail”, etc).

Simply set “+UseStashCachePosix=true” in the HTCondor submit file.

 LD_PRELOAD can have some overhead and may not work in all cases; hence, users
must explicitly ask for it.

Operations

* The StashCache service has a few basic components:
« Origin servers: one per VO. Run by the VO.
* Redirector: one for the entire system. Run by OSG Operations.
» Cache server: 5-10 for all of OSG. Run by 7?77?
* Looks like a site service (so, run by site admins) but behaves like a
central service (shared amongst several sites). Characteristics of a both
a Stratum-1 and site squid in the CVMFS ecosystem.
 We're aggressively looking at adding more remote debugging and
restart capabilities than a typical OSG service.

Ultimately, host site is always responsible for hardware and OS basics.

* In addition, there’s various pilot-side software. Distributed via CVMFS.

What's Real?

* The StashCache system has been tested by the OSG-Connect
team for several months.

* Limitation is the cache servers connect to the origin directly.

* Currently adding in the redirector so we have the capability to
have additional origin servers - even if we keep the existing
OSG-Connect server.

* Current timeline is to open to external OSG VOs around May.

* Will be looking for bleeding edge users. Expect a long
testing period before we declare production.

Future / Deferred Work

e Plenty of work in the short term:

Improve remote debugging / management of cache servers.

Add monitoring of cache health and performance.

Provide non-CVMFES distribution of software in pilots.

Operate, package, debug, understand.
* We've left out a key piece: cache management.

e Currently, plan on working closely with users to make sure they understand the working set
size limitations.

* Minimize problem by having cache sizes in 10s of TB.
* Monitor for new problematic workflows.

* Long-term, want to invest in technologies that avoid cache thrashing through pinning of
datasets. C.f. Derek Weitzel’'s dissertation work with condor_cached.

Parting Shots

 The SE paradigm provides a low-level interface to storage, allowing
VOs to customize every detail of their data management.

e This works out poorly for opportunistic sites.

o StashCache implements a cache-based data management
paradigm; applicable to many workflows for opportunistic VOSs.

o StashCache targets datasets in range 5GB-5TB.

e Service is run by VOs, Ops, and 5-10 host sites. No new service
at the average OSG site. No new software to install.

* Ininternal integration & testing now. Will be made available to
additional VOs throughout the year if all goes well.

Questions? Thoughts?
Opinions?

 For more detailed info, see Anna Olson’s
presentation at the UCSD XRootD workshop:

* https://indico.cern.ch/event/330212/session/6/
contribution/31/material/slides/0.pdf

e Credit where credit’s due:

o StashCache is a (very) modest extension of
ideas and implementation originally done by the
OSG Connect team.

https://indico.cern.ch/event/330212/session/6/contribution/31/material/slides/0.pdf

Backup Slides

Slide Courtesy Anna Olson

Testing & measurement methods

® Send jobs outto OSG
® Each job pulls a number of files using either

stashcp (for Stash Cache) or wget from STASH

o Locations: BU, UChicago, STASH, UCSD
o Files downloaded to either job sandbox or /dev/null
o Single or multiple jobs sent out at a time

® Source, destination, file size, and download
time are recorded

Slide Courtesy Anna Olson

Caching tests

® Pull same files multiple times

® 100 jobs sent out, each pulling 10 files in series
o Multiple jobs could be pulling from the same source!

® Available sources: BU, UChicago, UCSD and
STASH
® File size ranged from 750KB to 21GB

Slide Courtesy Anna Olson

all files

Median download speed

BU

UChicago

STASH

UCSD

80

60

40

20

MBps

Slide Courtesy Anna Olson

Distribution of speeds: UCSD (as destination)

600 -

4400~ Source
3 LucsD
O .~ STASH
200 -
0 40 80 120

MBps

