
StashCache: 
Data Services for the

OSG
Brian Bockelman,

On Behalf of the StashCache Team

Background
• The two large LHC VOs, ATLAS and CMS, own storage at many OSG sites

and use them as storage elements, or remotely accessible file systems.

• These SEs behave like - and are operated like - POSIX filesystems.

• For each POSIX command (cp, ls, mv, rm), there is an equivalent
command for the SE. For the SRM protocol, for example, srmcp, srmls,
srmmv, srmrm.

• The SE abstraction is very low level!

• Managing data is analogous to having a login to 50 clusters.

• Or copying files manually between your work desktop, laptop, phone,
and home desktop.

Background
• How is data handled in the SE paradigm?

• Access: Each SE has its own twist on data access. Either hardcode access rules locally
(yuck!) or come up with a standard site discovery mechanism (far less successful than
hardcoding!).

• Movement: A service is given a set of files from endpoint A to endpoint B. The files are
usable once files are at endpoint B.

• Catalogue: Some central service tracks the location of each file.

• Catalogs must be kept in sync for this to work!

• Data management: Rules engine verifies that all files are in the “correct” location according to
some set of rules. If not, make new copies with the movement service.

• Data lost? Site initiates a recovery procedure. In CMS, the site admin opens a ticket.

• It is assumed this is an exceptional event which does not happen frequently.

• If a file is not in the correct location, it can be considered an error.

Motivation

Opportunistic Computing is like giving away empty
airline seats; the plane was going to fly regardless.

Opportunistic Storage is like giving away real
estate.

(paraphrased from Mike Norman)

Motivation
• Using the SE paradigm has been a colossal failure for opportunistic VOs.

• Systems for CMS and ATLAS are robust and efficient, but proven
impossible for others. Cost of management is too high and
opportunistic VOs are unable to command site admin time.

• Key to this failure is the underlying assumption in the SE paradigm that file
loss is an exceptional event.

• Again, “Storage is like real estate.”

• To be successful, opportunistic storage must treat file loss as a
everyday, expected occurrence.

• The lack of high-speed local storage significantly decreases the range
of workflows opportunistic VOs can run on the OSG.

A Different Paradigm:  
Caching

• A file is downloaded locally to the cache from an origin server on first access.

• On future accesses, the local copy is used.

• When more room needs to be made for access, “old” files are removed (by
some algorithm which decides the definition of “old”).

• Downsides:

• Caching is only useful is the working set size is less than the cache size.

• Otherwise, the system performance is limited to the bandwidth of the
system feeding the cache.

• Working set size is difficult to estimate for multi-VO.

• Not all workflows are supported. This does not work well if files need to be
modified.

Hypothesis: A significant number of opportunistic workflows
have cache-friendly access patterns

Why Caching?
• Compare to caching:

• Access: All endpoints in infrastructure have same data access
method.

• Movement: If files are not local, they are moved in on-demand.

• Catalogue: All files are assumed to be at the “origin server”. We
do not need to track any other location information.

• Data management: Custodial copy of all files are at the origin; no
other explicit work is needed by VO.

• More resilient against failures, less work to do. Sites can reclaim
storage at any time (or other users can take it!)

Where Do We Use Caching
Today?

• Most sites have a local HTTP cache for for the Frontier application and/or
CVMFS.  
Why not use that?

• HTTP cache deploys have been sized to match the ~1GB working set
size of these use cases.

• Caches are typically sized/restricted to serve the local site.

• Our target is 5GB-5TB working set sizes for tasks.

• We’d also like to have zero service requirements for the local sites.

• CVMFS can have a light footprint, but it’s not zero.

• Further, we need to redesign caches for much larger working set size.

Big Idea: 
Can OSG provide a caching

service for opportunistic VOs?

Introducing StashCache
• Caching infrastructure based

on SLAC Xrootd server &
xrootd protocol.

• Each VO has a origin server.

• Cache servers are placed at
several strategic cache
locations across the OSG.

• Jobs utilize “nearby” cache,
for some definition of nearby.

OSG Data
Federation

OSG-XD
Source

OSG-Connect
Source

IF
Source

GLOW
Source

OSG
Redirector

Caching
Proxy

Caching
Proxy

Caching
Proxy

Caching
Proxy

Job
Job

Job

Download
Redirect

Discovery

Original Architecture
StashCache locations & compute sites

Stash
origin:

OSG

Caches:

Slide by Anna Olson (https://indico.cern.ch/event/330212/
session/6/contribution/31/material/slides/0.pdf)

https://indico.cern.ch/event/330212/session/6/contribution/31/material/slides/0.pdf

Scale and Scope
• The possible origin servers are limited to OSG VOs.

• During the pilot phase, we have a single origin server (OSG-Connect).

• No service requirement for each site.

• Each cache has minimum size (>10TB) and performance (10Gbps to
WAN).

• This allows us to provide reasonable lower bounds on acceptable
working set size.

• Scale system so it can support ~10k running jobs.

• Scope of the system is limited to data stage-in, not stage-out.

Data Access Methods
• Xrootd is not a familiar protocol for users. Goal is to provide reasonable UIs to VOs; users don’t care about

protocols, they care about interfaces.

• This means application protocol is implementation-defined; if protocol B is more relevant in 3 years, we
can use that.

• C.f., accessing “google.com” from Chrome does not use HTTP. Few users seem to care as long as the
browser (the interface) works.

• To upload files, VOs can provide users with a writeable shared filesystem exported by the origin server.

• Users first must “cp” their data to this mount point, then can access the files from their jobs.

• Top-level directory name is assigned to VO by OSG; VO manages the namespace within their directory.

• User interfaces:

• “cp”-like

• HTCondor file transfer

• POSIX

http://google.com

“cp”-like
• All glideins are instrumented with to have “stashcp” in the $PATH.

• stashcp emulates the CLI of venerable POSIX “cp”.

• Users simply say:

• stashcp stash:/user/bbockelm/foo $PWD

• Note no implementation details exposed!

• Summary of use statistics, performance, and errors encountered
are injected back to HTCondor ClassAd.

• All Stash usage becomes query-able with condor_history.

HTCondor File Transfer
• The workflow system (here, HTCondor) can manage file transfers

directly.

• The pilot configuration provides a callout script for handling a
given URL type. Underneath, this is implemented using stashcp.

• Using HTCondor file transfer plugins provides a mechanism for
concurrency management, policy-based retries, and removes
need for error handling in user jobs.

• HTCondor understands “file transfer failed” semantics directly.

• Users add the following line to their JDL:

• transfer_input_files = stash://user/bbockelm/foo

stash://user/bbockelm/foo

POSIX
• ‘stashcp’ and HTCondor file transfer plugins require the entire file to be downloaded locally.

• Not all worker nodes have large enough scratch disk.

• These ‘cp’ like interfaces can be difficult for applications which do not know what files will
be read - or require complex directory structures.

• Using a LD_PRELOAD library from the Xrootd team, we can make StashCache appear to be
a POSIX filesystem to the application.

• As many applications perform small reads, it uses the local filesystem as a cache for
accessed portions of the file.

• All “normal” POSIX utilities and APIs will work (think “ls”, “cat”, “tail”, etc).

• Simply set “+UseStashCachePosix=true” in the HTCondor submit file.

• LD_PRELOAD can have some overhead and may not work in all cases; hence, users
must explicitly ask for it.

Operations
• The StashCache service has a few basic components:

• Origin servers: one per VO. Run by the VO.

• Redirector: one for the entire system. Run by OSG Operations.

• Cache server: 5-10 for all of OSG. Run by ???

• Looks like a site service (so, run by site admins) but behaves like a
central service (shared amongst several sites). Characteristics of a both
a Stratum-1 and site squid in the CVMFS ecosystem.

• We’re aggressively looking at adding more remote debugging and
restart capabilities than a typical OSG service. 
Ultimately, host site is always responsible for hardware and OS basics.

• In addition, there’s various pilot-side software. Distributed via CVMFS.

What’s Real?
• The StashCache system has been tested by the OSG-Connect

team for several months.

• Limitation is the cache servers connect to the origin directly.

• Currently adding in the redirector so we have the capability to
have additional origin servers - even if we keep the existing
OSG-Connect server.

• Current timeline is to open to external OSG VOs around May.

• Will be looking for bleeding edge users. Expect a long
testing period before we declare production.

Future / Deferred Work
• Plenty of work in the short term:

• Improve remote debugging / management of cache servers.

• Add monitoring of cache health and performance.

• Provide non-CVMFS distribution of software in pilots.

• Operate, package, debug, understand.

• We’ve left out a key piece: cache management.

• Currently, plan on working closely with users to make sure they understand the working set
size limitations.

• Minimize problem by having cache sizes in 10s of TB.

• Monitor for new problematic workflows.

• Long-term, want to invest in technologies that avoid cache thrashing through pinning of
datasets. C.f. Derek Weitzel’s dissertation work with condor_cached.

Parting Shots
• The SE paradigm provides a low-level interface to storage, allowing

VOs to customize every detail of their data management.

• This works out poorly for opportunistic sites.

• StashCache implements a cache-based data management
paradigm; applicable to many workflows for opportunistic VOs.

• StashCache targets datasets in range 5GB-5TB.

• Service is run by VOs, Ops, and 5-10 host sites. No new service
at the average OSG site. No new software to install.

• In internal integration & testing now. Will be made available to
additional VOs throughout the year if all goes well.

Questions? Thoughts?
Opinions?

• For more detailed info, see Anna Olson’s
presentation at the UCSD XRootD workshop:

• https://indico.cern.ch/event/330212/session/6/
contribution/31/material/slides/0.pdf

• Credit where credit’s due:

• StashCache is a (very) modest extension of
ideas and implementation originally done by the
OSG Connect team.

https://indico.cern.ch/event/330212/session/6/contribution/31/material/slides/0.pdf

Backup Slides

Slide Courtesy Anna Olson
Testing & measurement methods

● Send jobs out to OSG
● Each job pulls a number of files using either

stashcp (for Stash Cache) or wget from STASH
○ Locations: BU, UChicago, STASH, UCSD
○ Files downloaded to either job sandbox or /dev/null
○ Single or multiple jobs sent out at a time

● Source, destination, file size, and download
time are recorded

Slide Courtesy Anna Olson
Caching tests

● Pull same files multiple times
● 100 jobs sent out, each pulling 10 files in series

○ Multiple jobs could be pulling from the same source!

● Available sources: BU, UChicago, UCSD and
STASH

● File size ranged from 750KB to 21GB

Slide Courtesy Anna Olson
Median download speed: all files

Slide Courtesy Anna Olson
Distribution of speeds: UCSD (as destination)

