EXOTIC HIGGS DECAYS

Jessie Shelton

U. Illinois, Urbana-Champaign

BSM Higgs @ LHC workshop, Fermilab November 5, 2014

The SM-like Higgs boson

A light SM-like Higgs is narrow:

 $\Gamma_h(125 \text{ GeV}) = 4.1 \text{ MeV}$

Exotic decays of the SM-like Higgs

■ Presence of new light degrees of freedom can distort Higgs Brs by O(1) even for small couplings

Simple example: one new scalar

$$\Delta \mathcal{L} = \frac{\zeta}{2} s^2 |H|^2$$

- Motivations for new physics at the weak scale:
 - co-responsible for electroweak symmetry breaking
 - stabilize weak scale
 - dark matter
 - ...why not?

The same motivations apply horizontally as well as vertically

- Hidden sector signatures: driven by size and structure of leading interactions
 - \blacksquare portals: $|H|^2$, $B_{\mu\nu}$, HL_L ...

- Extended Higgs sectors: SM + s, MSSM + S
 - simplest realization of Higgs portal coupling: $|S|^2|H|^2$
 - NMSSM: dynamically generate μ , relax phenomenological constraints on V(H), neutralino dark matter
 - electroweak baryogenesis: first-order phase transition

Naturalness

Twin Higgs and related models:

$$[(MS)SM] \qquad \qquad [(MS)SM']$$

- light weak-scale states needed for naturalness can be SM singlets
 - Higgs portal interactions by construction; also possibly hypercharge

Dark matter:

- "WIMP miracle": a statement about cold dark matter freezing out via perturbative interactions
- Hidden sector freezeout:

Why not?

- Hidden sectors are a generic ingredient in UV theories: e.g., SUSYbreaking
- Generic signatures of new physics may be light, weakly coupled states just as well as heavier, SM-charged states
- Characterize signatures by portals mediating SM-HS interactions
 - Higgs portal: unique possibilities at LHC: direct Higgs production, small SM width

Exotic Higgs decays at the LHC

- The LHC as an intensity frontier machine
 - Higgs production cross-section at 8 TeV: ~20 pb
 - Integrated luminosity, ~20 ifb
 - ~400000 Higgs bosons served
 - If: reasonable reconstruction efficiency, good S/B: statistics for branching fractions ~10⁻⁴

Lessons from LHC8 recasts

 Prospects depend in detail on the particles in the final state, and range from spectacular to very hard

Easy: multiple resonant light leptons

$$Br \lesssim 4 \times 10^{-4}$$

Hard: all-hadronic

 $Br \lesssim 0.9$

Exotic Higgs decays at the LHC

Indirect limits: observation of SM modes

Direct searches for exotic Higgs decays

Example: a scalar field coupled to the SM via the Higgs portal:

$$V(H,S) = V(H) + V(S) + \frac{1}{2}\zeta S^{2}|H|^{2}$$

$$\Rightarrow \Delta \mathcal{L} = \frac{1}{2} \kappa h s^2$$

 Same coupling controls s decay: Brs of SM Higgs of given mass

$$s$$
 -- x - $\bar{f}f$, ...

- Two Higgs doublet models + S:
 - light pseudoscalar mixing with A^0
 - altered Yukawa couplings

Type 1: SM

Singlet pseudoscalar Br: SM Yukawas

- Two Higgs doublet models + S:
 - light pseudoscalar mixing with A^0
 - altered Yukawa couplings

Type 1: SM
Type II: NMSSM-like

Singlet pseudoscalar Br: Type II Yukawas

- Two Higgs doublet models + S:
 - light pseudoscalar mixing with A^0
 - altered Yukawa couplings

Type 1: SM Type II: NMSSM-like

Type III: lepton-specific

Singlet pseudoscalar Br: Type III Yukawas

- Two Higgs doublet models + S:
 - light pseudoscalar mixing with A^0
 - altered Yukawa couplings

Type 1: SM

Type II: NMSSM-like

Type III: lepton-specific

Type IV: flipped

Singlet pseudoscalar Br: Type IV Yukawas

Most generic prediction of Higgs-portal scalars:

$$h \to ss(aa) \to 4b$$

Four soft *b*-jets:

$$p_T \lesssim 30 \text{ GeV}$$

use VH associated production

- Current status:
 - mass-dependent efficiency for an $h \rightarrow 4b$ event to pass $SM h \rightarrow 2b$ search criteria
 - For light (~ 15 GeV) scalars:

$$Br(h \to 4b) \lesssim 0.7$$

Heavier scalars: no limit

Most generic prediction of Higgs-portal scalars:

$$h \to ss(aa) \to 4b$$

- Future prospects:
 - analyses with, without jet substructure
 - ultimate 95% CL
 sensitivity in both cases
 estimated to be

$$Br(h \to 4b) \approx 0.1$$

■ If *a* is light or leptophilic: $h \rightarrow ss(aa) \rightarrow 4\tau$

gluon fusion via leptons; binned event rates alone

• Gain from sharp resonance in subdominant $a \to 2\mu$, despite smaller rate:

estimate of current
sensitivities in a
CMS-like
multilepton
analysis extended
to incorporate
dimuon mass

Power of clean dimuon resonance: $h \to ss(aa) \to 2b2\mu$

$$\frac{Br(a \to 2\mu)}{Br(a \to 2b)} \sim \frac{m_{\mu}^2}{3m_b^2} \approx 2 \times 10^{-4}$$

resonant dimuon pair plus:

[Curtin, Essig, Zhong, to appear; Exotic Higgs Decay Working Group: 1312.4992]

• Power of clean dimuon resonance: $h \to ss(aa) \to 2b2\mu$

$$\frac{Br(a \to 2\mu)}{Br(a \to 2b)} \sim \frac{m_{\mu}^2}{3m_b^2} \approx 2 \times 10^{-4}$$

[Curtin, Essig, Zhong, to appear; Exotic Higgs Decay Working Group: 1312.4992]

Direct searches

LHC prospects for $h \rightarrow ss$, aa.

	Projected/Current		quarks allowed		quarks suppressed	
Decay	2σ Limit	Produc-		Limit on		Limit on
Mode	on $\mathrm{Br}(\mathcal{F}_i)$	tion	$\frac{\operatorname{Br}(\mathcal{F}_i)}{\operatorname{Br}(\operatorname{non-SM})}$	$\left \frac{\sigma}{\sigma_{\mathrm{SM}}} \cdot \mathrm{Br(non\text{-}SM)} \right $	$\frac{\operatorname{Br}(\mathcal{F}_i)}{\operatorname{Br}(\operatorname{non-SM})}$	$\left \frac{\sigma}{\sigma_{\mathrm{SM}}} \cdot \mathrm{Br(non\text{-}SM)} \right $
\mathcal{F}_i	7+8 [14] TeV	Mode		7+8 [14] TeV		7+8 [14] TeV
$bar{b}bar{b}$	$0.7^R \ [0.2^L]$	W	0.8	0.9 [0.2]	0	_
$bar{b} au au$	$> 1 \ [0.15^L]$	V	0.1	> 1 [1]	0	_
$bar{b}\mu\mu$	$(2-7)\cdot 10^{-4}$ T	G	3×10^{-4}	0.7 - 1	0	_
	$[(0.6-2)\cdot 10^{-4}]$			[0.2-0.7]		
ττττ	$0.2 - 0.4^{R}$ [U]	G	0.005	40 - 80 [U]	1	0.2 - 0.4 [U]
$\tau \tau \mu \mu$	$(3-7)\cdot 10^{-4} \ ^{T} \ [\mathrm{U}]$	G	3×10^{-5}	10 – 20 [U]	0.007	0.04 - 0.1 [U]
$\mu\mu\mu\mu$	$1\cdot 10^{-4}~^R~\mathrm{[U]}$	G	$1\cdot 10^{-7}$	1000 [U]	$1\cdot 10^{-5}$	10 [U]

Direct searches

LHC prospects for $h \rightarrow ss, aa$.

	Projected/Current		quarks allowed		quarks suppressed	
Decay	2σ Limit	Produc-		Limit on		Limit on
Mode	on $\mathrm{Br}(\mathcal{F}_i)$	tion	$\frac{\operatorname{Br}(\mathcal{F}_i)}{\operatorname{Br}(\operatorname{non-SM})}$	$\left \frac{\sigma}{\sigma_{\rm SM}} \cdot \text{Br(non-SM)} \right $	$\frac{\operatorname{Br}(\mathcal{F}_i)}{\operatorname{Br}(\operatorname{non-SM})}$	$\frac{\sigma}{\sigma_{\mathrm{SM}}} \cdot \mathrm{Br(non\text{-}SM)}$
\mathcal{F}_i	7+8 [14] TeV	Mode		7+8 [14] TeV		7+8 [14] TeV
$bar{b}bar{b}$	$0.7^R \ [0.2^L]$	W	0.8	0.9 [0.2]	0	_
$bar{b} au au$	$> 1 \ [0.15^L]$	V	0.1	> 1 [1]	0	_
$bar{b}\mu\mu$	$(2-7)\cdot 10^{-4}$ T	G	3×10^{-4}	0.7 - 1	0	_
	$[(0.6-2)\cdot 10^{-4}]$			[0.2-0.7]		
ττττ	$0.2 - 0.4^{R}$ [U]	G	0.005	40 - 80 [U]	1	$0.2 - 0.4 \; [\mathrm{U}]$
$\tau \tau \mu \mu$	$(3-7)\cdot 10^{-4} \ ^{T} \ [\mathrm{U}]$	G	3×10^{-5}	10 – 20 [U]	0.007	0.04 - 0.1 [U]
$\mu\mu\mu\mu$	$1\cdot 10^{-4}~^R~\mathrm{[U]}$	G	$1 \cdot 10^{-7}$	1000 [U]	$1\cdot 10^{-5}$	10 [U]

Direct searches

LHC prospects for $h \rightarrow ss$, aa.

	Projected/Current		quarks allowed		quarks suppressed	
Decay	2σ Limit	Produc-		Limit on		Limit on
Mode	on $\mathrm{Br}(\mathcal{F}_i)$	tion	$\frac{\operatorname{Br}(\mathcal{F}_i)}{\operatorname{Br}(\operatorname{non-SM})}$	$\frac{\sigma}{\sigma_{\rm SM}} \cdot \text{Br(non-SM)}$	$\frac{\operatorname{Br}(\mathcal{F}_i)}{\operatorname{Br}(\operatorname{non-SM})}$	$\left \frac{\sigma}{\sigma_{\mathrm{SM}}} \cdot \mathrm{Br}(\mathrm{non\text{-}SM}) \right $
\mathcal{F}_i	7+8 [14] TeV	Mode		7+8 [14] TeV		7+8 [14] TeV
$b\bar{b}b\bar{b}$	$0.7^R \ [0.2^L]$	W	0.8	0.9 [0.2]	0	_
$bar{b} au au$	$> 1 \ [0.15^L]$	V	0.1	> 1 [1]	0	_
$bar{b}\mu\mu$	$(2-7)\cdot 10^{-4}$ T	G	3×10^{-4}	0.7 - 1	0	_
	$[(0.6-2)\cdot 10^{-4}]$			[0.2 - 0.7]		
ττττ	$0.2 - 0.4^{R}$ [U]	G	0.005	40 – 80 [U]	1	0.2 - 0.4 [U]
$\tau \tau \mu \mu$	$(3-7)\cdot 10^{-4}$ [U]	G	3×10^{-5}	10 – 20 [U]	0.007	0.04 - 0.1 [U]
μμμμ	$1\cdot 10^{-4}~^R~\mathrm{[U]}$	G	$1\cdot 10^{-7}$	1000 [U]	$1\cdot 10^{-5}$	10 [U]

Beyond the simple examples

- Recast LHC8 limits: dependence on (electroweak) object acceptance
- More general theories easily yield longer hidden sector showers/cascades, often some detector-stable states
 - more objects! ...and thus softer
- Displaced decays: often clean, great statistical reach
- Triggering: *VH*? VBF?

Summary and conclusions

- The observed 125 GeV Higgs boson is highly sensitive to the potential existence of new light degrees of freedom
- Already in LHC8 data: interesting results and prospects for many exotic decay modes
- Great statistical power from LHC14: Higgs factory
 - but reduced acceptance for low- p_T objects may limit the gains
- See Stefania Gori's talk for more!