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Introduction

® After the discovery of the Higgs boson, one of
the most important jobs is to determine its

properties.

® Because of the hierarchy problem, new physics is
expected near the weak scale, which can modify
the Higgs sector from the Standard Model.

® A crucial question is whether the Higgs boson is
elementary or composite.



Composite Higgs

® A composite Higgs boson is generically expected
to be heavy. To make it light, its mass should be
protected by some symmetry, i.e., Higgs as a
pseudo-Nambu-Goldstone boson (pNGB)
(Kaplan & Georgi '84).

® The large top quark mass is a challenge for
composite Higgs models. The top quark should
(at least partially) participate in the strong
dynamics which forms the composite Higgs.

- An example is top condensation (Nambu '89,
Miransky et al '89): Higgs is a bound state of t.



Top Condensation
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® The 4-fermion interaction may arise from
integrating out new physics at high scale, e.g.,
topcolor (Hill,’91), SU(3)1xSU(3)2—SU(3)c.

® Similar to the Nambu-Jona-Lasinio model (1961),
for g »1, it can form tzv; bound state, which

has the same quantum number as the Higgs field.

® The 4-fermion interaction is not confining.



Top Condensation
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® For g > gerit = m\/8/N. = bound state gets a VEV,

breaking the chiral (EW) symmetry.



Top Condensation
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* Top Yukawa coupling: ¢ ~ \/N In(A/p)
-In(A/ps

For A/u not too large, & ~3-4 = m; ~ 600 GeV

* Higgs quartic coupling: in leading Nc (fermion
bubble) approximation, A =252 = M; = 2m;

- M}, m; may be reduced by raising the
compositeness scale at the expenses of fine
tuning, but still too heavy. (Bardeen, Hill, Linder "90)



Top Seesaw Model

® An attractive solution to the top mass problem is
to invoke the seesaw mechanism (Dobrescu & Hill
'98): introducing vector-like singlet quarks x., Xr
to mix with top quark.
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v = 246 GeV.

A light eigenstate ~ |73 GeV can be obtained
which is identified as the top quark.



Top Seesaw with a Light Higgs

® What about the Higgs boson mass? If it’s still
heavy as one may naively expect, then it is ruled

out by the discovery of a relatively light Higgs.

® A light Higgs boson arises naturally if the
underlying strong dynamics preserves a U(3)

symmetry among (L, b, XL).
p Higgs field belongs to NGBs of U(3) = U(2)



Scalar Potential

® Assuming the underlying (non-confining) strong
dynamics is approximately U(3)L X U(2)r
symmetric for (I, br, x1) and (tr, XR), they form
composite scalars, ¢ — (cbt cbx)
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Symmetry Breaking

® VWe assume that there are large U(2)r breaking
effects: Vi, = M, ®]®, + 6M, @10, + (M},®1 &, + H.c.)

. . 2 2 2 2
which split M;; and M, such that M; <0 < M
Nonzero(®, ) is induced and U(3)L is spontaneously
broken.

® The U(3)L is also explicitly broken by the quark
Mass terms: Lmass = —UxtXLIR — UxxXLXR + H.c.

They map into scalar tadpole terms in low energy
EFT, Viadpole = —(0,0,C,¢)®; — (0,0, C, )P, + H.c.

Cyt & ,uXtA2/§, Cyx & MxxAz/g-
We can use U(2) rotation to set C,, = 0.




Minimizing the Scalar Potential

® The tadpole C,; induces a nonzero (¢¢),
(Hy) is then induced by M?,, M, , breaking EW sym.
Minimizing the potential, we obtain:
(Hy) =0, (¢¢) = ur = usiny = us,,
(Hy) =v, (@y) = Uy = UCOSY = UC~,

F=vVu2+02(=u>v),
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Top Quark Mass

® Charge-2/3 fermion mass matrix:

t
Lisht eiscenvalue: "~ —=vS8, = S+ x =& — ~ —.
8 8 t NG Y Y £

Heavy t’fermion: my ~ %u (~2.5f)



Light Higgs Mass

® CP-even scalar mass matrix: (h,, h,, ¢, dy )
A1

)\1 >\1
(MIQ# _‘_32}2 0 — 5 U, — 5 uvsy \
0 (A1 + Ag)v? AQUVS- (A1 + A2)uve,
\ c? A
—Eluvc7 AUV S MIQ#—I— [)\1(1— %) -l—)\zS%] u’ (?1 + Az) UQSWCW
A A s3
\ —éuvs,y (A1 + A2)uve, (?1 + )\2> u’s.,c, [)\1(1— %) + >\203] U2)

: : ) 2 i MIQJi 2. 2
Lightest eigenvalue: M ~ <2§2> (M]%[i W Yi v
In the limit § — % or m;— 0, siny— 0 and C,,— 0,
there is no explicit U(3) breaking, Higgs becomes
an exact NGB.



coupling ratios
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Light Higgs Mass
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Electroweak Interactions

® Explicit U(3) breaking electroweak interaction can
further decreases the Higgs boson mass.
995 +3g7 M; M,
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where M, is the cutoff the EWV gauge loop.

* Mh=125 GeV corresponds to Ah=10.14 @ 10TeV.



Numerical Results

* Higgs mass depends on \;/(2¢%), My=/f,M,/f,
but is insensitive to &, A2, f-
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Requiring Ap > 0 at my puts a lower bound ~ 80 GeV
80GeV < My, < 175 GeV



VVeak-isospin violation

* The main constraint comes from weak isospin
violating I parameter from the t’loop
contribution. [U(3)L doesn’t contain a custodial

SU(2) symmetry.]
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Phenomenology

® [arge fimplies fine tuning (~V2/FF) of the EW
scale, also makes all other states very heavy

[except the 5th PNGB, Ay, with a mass ~ (1/v) M.
They are beyond of reach of the LHC.

® |t also means the model is near the decoupling
limit. Corrections to the Higgs coupling to SM
fields is ~ v2/(212) = 0.2%, difficult even for a

future lepton collider. However, I-parameter can
be precisely measured at a future £ factory

® {’ of mass up to ~10TeV may be reachable at a 100
TeV collider, through t— Wb, tZ, th, tA:.



Custodial SU(2) Extensions

(HC and |. Gu, arXiv:1406.6689)
® The [ constraint could be alleviated if the model

can be extended to include a custodial SU(2).

® Extension to bottom seesaw is strongly
constrained by Z — bb.

® To avoid the constraint from Z — bb, we need to
assign (f, b)L as (2, 2) under SU(2).xSU(2)r with a
PLrR symmetry. (Agashe et al, hep-ph/0605341)

- Introduce a vector-like hypercharge +7/6
doublet quark (X, T) in addition to the singlet X.
The weak isospin can be protected by the O(5)L

C U(5)L among W =(1r, br, X, T, XL).



Weak-isospin T Parameter

Explicit O(5)L breaking masses:
_ _ — =\ (X
Efermion masses — _MtXLtR — HxxXLXR — HQ (XL TL) (T}f) + H.c.

® |n the limit ue—0 (Mx —0), adding (X, T ). cancels
the SM (¢, b). contribution to T, resulting in a
negative T.

® |n the limit ug—=%° (Mx =), (X, T) decouples
and we recover the minimal model. There is a
large positive contribution to T if f is low.

® For a suitable range of LUg (Mx=f) we expect to

get a [ value compatible with the EWV precision
measurement.
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Higgs Boson Mass

Current bound Mx>800 GeV (CMS). Small T and

correct Higgs mass can be obtained for Mx =f.
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Higgs Couplings

® Most tree-level Higgs couplings are suppressed
by 7-v2/(2F). Corrections are ~3% for f=1 TeV.

1.5
® hQgg coupling receives

loop contributions fromr 4
top partners. However,
they are small within & s

the allowed parameter 12 <0
space. |

1.1
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Compared with other models

® Holographic composite Higgs: (Agashe, Contino, Pomarol, ...)

- The global symmetry is preserved by the strong sector
exactly. Explicit breaking comes from coupling to SM
fermions, which are not complete multiplets.

- Higgs boson mass related to the top partner masses
which cut off the radiative contributions.

® TJop seesaw model:

- Top and new quarks form a complete multiplet of the

global symmetry. Explicit breaking comes from fermion
mass terms, similar to QCD.

- Higgs boson mass related to the top quark mass through
the top seesaw mechanism.



Conclusions

A light Higgs boson of 125 GeV can arise naturally
in a composite Higgs model from top condensation
with the top seesaw mechanism.

The simplest model based on U(3) symmetry

requires a large f = fine-tuned and probably out of
the reach of LHC.

Extension to O(5) can reduce fine-tuning. It
requires relatively light exotic top partners (X3, 73).
The 14 TeV LHC can significantly extend their reach.

Most heavy states (scalars and singlet top partner)
require a higher energy machine beyond LHC.



Backup Slides



Light Fermion Masses and FCNC

® The light SM fermion masses come from 4-fermion
interactions at the compositeness scale.

® There are 2 Higgs doublets. Large tree-level FCNCs
can be induced if they have general couplings (not
type | or |l) to fermions.

® However, fermion masses and mixings are
hierarchical. It’s likely there is some approximate
flavor symmetry which controls the 4-fermion
interactions. In that case FCNC constraints can be

satisfied if the other Higgses are heavier than ~ | TeV.
(Cheng, Sher, '84, , Antaramian, Hall, Rasin, 92, ...)



Custodial SU(2) Extensions

® We introduce a vector-like hypercharge +7/6

doublet quark (X, T) in addition to the singlet Y.
The strong dynamics has approximate U(5)L xU(4)r

symmetry among W =(t, b, Xi, T1, Xr) and
Wr=(XR, IR, lr, XR).
L — 'Ckinetic _|_ G(WLZ\IIRJ)(WRJ \IILZ)

They form scalar bound states:
O1x O?T Uz?t (ng
Opx  Opr Opt %—X
®=|0o%x oxr OoX, Xx = (ZX 2T 2y CIDX) .
Orx Ot Ory T
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with Yukawa interaction Lvuawa = P ¥R+ H.c.



Custodial SU(2) Extensions

The vector-like fermion can have gauge invariant masses,
_ _ — =\ (X
['fermion masses —— _,utXLtR — HxxXLXR — HQ (XL TL) ( R) + H.c.

They turn into scalar tadpole terms in low energy EFT.
We also assume that U(4)r is strongly broken so that

only ®, have negative mass-squared, while 2x, 21, 2
remain heavy. The scalar potential at low energy is given

by
A\

V= 2 Te[(210)%) + = -

5 —=(Tr[®'®])
+ M3, SiSx + M3 SEp + M3 SIS, + Mg o,

0 0
- CQO-XX - CQO-TT - CXtO-Xt XX¢ —l_ HC



Custodial SU(2) Extensions

For heavy 2x, 2.7, 2, they can be integrated out and

we focus on ®y. The leading effects of 2x, 21, 2t are
their VEVs induced by the tadpole terms.

A A
V= T T[(@1)) + T (Th[@1 ) + Mg @@, — O (o + 6)).

0 0 0 ¢} 0
s 0 0 o %
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(oxx) = (orT) = 75 (Oxt) = \/% -



Custodial SU(2) Extensions

To avoid 2 light Higgs doublets and to protect the
custodial symmetry, we include a scalar mass term
which breaks U(5)L down to O(5)y,

1
Virsy = 5}(2 (Te[XT%] + Ai) |
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O(5)Lis then spontaneously broken by negative Mg ,
generating light Goldstone bosons as the Higgs.



Custodial SU(2) Extensions

Due to the tadpoles, o7, 7. also obtain VEVs in
addition to ¢, , breaking EW symmetry.

O_Ut+ht+if4t O_UT—I—hT+iAT O_uX+hX+iAX
¢t_ \/§ ¢T_ \/§ ¢X_ \/i y
Ut
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T

(tan 8 — 1 as K% — o)

Chiral symmetry breaking scale: /= \/v? + oy + U}



Generalized Top Seesaw

f o 0 0 (o tR fuj—
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The heavy top partners:
My, R MY = 5—\/1; ( <f to minimize T)
Mig ~ f/—g N(Q_S)f

Current experimental bound: mx > 800 GeV (CM\S).



Riggs Boson Mass
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EWV gauge loops further reduce the Higgs mass.

125 GeV Higgs (Anh = Mr2/V2 = 0.26) is typically
obtained for mx = f.



Higgs mass dependence on model parameters
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