Other Exotic [Hidden Sector and NMSSM] Higgs Decays at the LHC

Chris Potter, for the CMS and ATLAS Collaborations

University of Oregon

Talk Overview

Next-to-Minimal Supersymmetric Model

One singlet superfield S is introduced to the MSSM. An effective μ term is generated $\mu_{e f f}=\lambda\langle S\rangle$ at a natural scale.

- The NMSSM superpotential is given by:

$$
\mathbf{W}=\lambda \mathbf{S H}_{\mathbf{u}} \mathbf{H}_{\mathbf{d}}+\frac{\kappa}{3} \mathbf{S}^{3}
$$

The soft SUSY breaking terms in the NMSSM Lagrangian are

$$
V_{\text {soft }}=m_{H_{d}}^{2}\left|H_{d}\right|^{2}+m_{H_{u}}^{2}\left|H_{u}\right|^{2}+m_{S}^{2}|S|^{2}+\left(-\lambda A_{\lambda} H_{u} H_{d} S+\frac{1}{3} A_{\kappa} \kappa S^{3}+\text { h.c. }\right) .
$$

Six parameters determine the NMSSM Higgs sector at tree level:
$\lambda, \kappa, A_{\lambda}, A_{\kappa}, \tan \beta$ and $\mu_{e f f}$
The NMSSM Higgs sector has 2 neutral CP-odd, 3 neutral CP-even and 2 charged scalars:
$a_{1}, a_{2}, h_{1}, h_{2}, h_{3}, H^{+}, H^{-}$

NMSSM Higgs Mass Spectrum

Low mass scalars a_{1} and h_{1} absent in the MSSM but present in the NMSSM are motivated by the anomalous muon magnetic moment and the LEP excess in the $Z h \rightarrow Z b \bar{b}$ channel.

Eur.Phys.J.C47:547-587,2006

NMSSM Neutralino Mass Spectrum

Low mass neutralinos χ absent in the MSSM are motivated by the gamma ray excess in the galactic core and the dark matter relic density as low mass scalars allow $\chi \chi \rightarrow a_{1}, h_{1} \rightarrow q \bar{q}, \ell^{+} \ell^{-}$.

BSMHiggs@LPC, 5 November 2014 - p.5/25

NMSSM $g g \rightarrow a_{1} \rightarrow \mu^{+} \mu^{-}$at the LHC

CMS-HIG-12-004

BSMHiggs@LPC, 5 November 2014 - p.6/2

NMSSM $g g \rightarrow a_{1} \rightarrow \mu^{+} \mu^{-}$at CMS (i)

Signal Model
Pythia 6.4.25 generator used to generate MSSM $A \rightarrow \mu^{+} \mu^{-}$with CTEQ6 PDF.
Fit the signal $m_{\mu^{+} \mu^{-}}$mass resolution σ and overall efficiency $\epsilon=\epsilon_{\text {acc }} \times \epsilon_{\text {trig }} \times \epsilon_{\text {sel }}$ as a function of $m_{\mu^{+} \mu^{-}}$to interpolate between generated mass points.

Background Model

Model is determined from data fit: QCD is fit with degree one polynomial while the $\Upsilon(1,2,3 s)$ tail are each fit with double Crystal Ball.
Crystal Ball parameters are constrained so resolution $\sigma_{\Upsilon(1 s)}=\sigma_{\Upsilon(2 s)}=\sigma_{\Upsilon(3 s)}$ and $\Delta m(\Upsilon(1 s), \Upsilon(2 s)$ and $\Delta m(\Upsilon(1 s), \Upsilon(3 s)$ are fixed to world averages.

Data Selection

Trigger on a good primary vertex and two prompt oppositely charged muons with $p_{T}>3.5 \mathrm{GeV}, p_{T}\left(\mu^{+} \mu^{-}\right)>6 \mathrm{GeV}$ and $5.5<m_{\mu^{+} \mu^{-}}<14 \mathrm{GeV}$ (prescale 2).

- Offline selection requires two oppositely charged muons with $|\eta|<2.4, p_{T}>5.5 \mathrm{GeV}$, relative isolation $I_{r e l}<0.2$ (cone $\Delta R=0.3$), ≥ 11 pixel hits and track fit $\chi^{2} /$ dof <1.8.
Systematic Uncertainties
Signal uncertainties of 12% from $\epsilon, 5 \% I_{\text {rel }}, 11 \%$ (4\%) barrel (endcap) σ.
Background uncertainty of few \% from the assumed QCD PDF.
BSMHiggs@LPC, 5 November 2014 - p.7/2

NMSSM $g g \rightarrow a_{1} \rightarrow \mu^{+} \mu^{-}$at CMS (ii)

Dimuon invariant mass in the barrel (left) and endcap (right).

NMSSM $g g \rightarrow a_{1} \rightarrow \mu^{+} \mu^{-}$at CMS (iii)

CMS-HIG-12-004,Phys.Rev.Lett.109(2012)121801

Limits on $\sigma \times B R$ translated to limits on $\cos \theta_{A}\left(a_{1}=\cos \theta_{A} a_{M S S M}+\sin \theta_{A} a_{S}\right)$.
BSMHiggs@LPC, 5 November 2014 - p.9/2

NMSSM $g g \rightarrow a_{1} \rightarrow \mu^{+} \mu^{-}$at ATLAS

Likelihood ratio and its optimization (left), background fit and limits on $\sigma \times B R$ (right).

Hidden Sector Higgs

Hidden sector with a non-abelian gauge group where no SM particle is charged.
Hidden sector consists of a confining gauge group which makes hadrons π_{v} from hidden sector quarks.
A scalar ϕ gives mass to the hidden sector quarks and may mix with the SM Higgs.
Only coupling of the hidden sector to SM is through a heavy Z^{\prime}, which couples to SM.
Neutral π_{v} can have lifetimes of order $100 \mathrm{ps}(1 \mathrm{ps})$ for $m_{\pi_{v}}=20(40) \mathrm{GeV}$.

Hidden Sector $\Phi_{H S} \rightarrow \pi_{v} \pi_{v} \rightarrow 4 j$ at ATLAS (i)

Signal Model

Pythia8 used to generate $g g \rightarrow \Phi_{H S} \rightarrow 2 \pi_{v}$ with longlived $\pi_{v} \rightarrow b \bar{b}, \tau^{+} \tau^{-}, c \bar{c}$ with Higgs-like couplings.
Masses $m_{\Phi_{H S}}=100,126,140 \mathrm{GeV}$, $m_{\pi_{v}}=10,20,25,40 \mathrm{GeV}$ depending on $m_{\Phi_{H S}}$.

Data Selection

Trigger on narrow jets with $E_{T}>40 \mathrm{GeV}$, no associated tracks and little $E_{E M}$.
Select offline anti-k $R=0.4$ jet with $E_{T}>60 \mathrm{GeV},|\eta|<2.5, \log _{10}\left(E_{H} / E_{E M}\right)>1.2$ and no $p_{T}>1 \mathrm{GeV}$ tracks in a cone $\mathrm{R}=0.2$ around the jet axis.
\checkmark Select a second offline jet similarly but with relaxed E_{T} requirement $E_{T}>40 \mathrm{GeV}$.
Background Model
Define a probability P for multijets events to survive the trigger and offline $E_{T}>60 \mathrm{GeV}$ jet requirements and Q to survive the offline $E_{T}>40 \mathrm{GeV}$ jet requirements.
Multijets background model is determined from a data fit with Landau PDF for P and exponential PDF for Q.

Systematic Uncertainties
Signal uncertainties dominated by pileup (10\%) and production cross section (10\%).
Secondary uncertainties from JES, trigger, ISR, PDF give overall uncertainties 15-16\%.

Hidden Sector $\Phi_{H S} \rightarrow \pi_{v} \pi_{v} \rightarrow 4 f$ at ATLAS (ii)

Associated tracks and hadronic component (top), and multijet probabailities P and Q (bottom).

$N_{s i g}^{e x p}$ vs π_{v} decay length and $\sigma / \sigma_{S M}$ limits (top), $\sigma \times B R$ limits $m_{\Phi_{H S}}=100,140 \mathrm{GeV}$ (bottom). BSMHiggs@LPC, 5 November 2014 - p.14/2E

Hidden Sector $H^{0} \rightarrow X^{0} X^{0} \rightarrow 4 f$ at CMS

Limits on $\sigma_{p p \rightarrow H^{0} \rightarrow 2 X^{0}} \times B\left(X^{0} \rightarrow q \bar{q}\right)$ for $m_{H^{0}}=1000 \mathrm{GeV}$ (top) and $m_{H^{0}}=400 \mathrm{GeV}$ (bottom) BSMHiggs@LPC, 5 November 2014 - p. 15/2E

Summary and Outlook

Couplings of the h_{125} Higgs allow for additional exotic decays, and other Higgs bosons decays are unconstrained.
The NMSSM provides a solution to the MSSM μ-term problem and includes possibly very light scalars.
\square Hidden Sector Higgs decays to longlived neutral particles may be a window to a hidden sector.
Public searches at the LHC
(NMSSM $g g \rightarrow a_{1}$
NMSSM $h_{1} \rightarrow 2 a_{1}$ 特 at AIIAS(see supplementary 恠es)
Hidden Sector deciy to Honelive Neutra Hecays o D Dits at CMS+ATLAS
Hidden Sector decays to to Lepton Jets at ATLAS (see su polementary slides)
Outlook
\checkmark More LHC Run1 Higgs analyses are underway.
Run2 promises more data and more powerful constraints (or even discovery).

Thanks to the BSMHiggs@LPC organizers, and bring on Run2!

BSMHiggs@LPC, 5 November 2014 - p.17/2

NMSSM Higgs at Aleph,BaBar,DZero,CDF

NMSSM $g g \rightarrow a_{1} \rightarrow \mu^{+} \mu^{-}$at ATLAS (i)

Signal Model

Signal model from MC@NLO generator $a \rightarrow \mu^{+} \mu^{-}$with CTEQ6.6 PDF.
Signal efficiency is $\epsilon=\epsilon_{a c c} \times \epsilon_{\text {trig }} \times \epsilon_{\mu^{+} \mu^{-}} \times \epsilon_{L R}$.

Background Model

Model is determined from data fit: QCD is fit with degree four polynomial while the $\Upsilon(1,2,3 s)$ are each fit with double Gaussian.
Gaussian parameters are constrained so resolution $\sigma_{\Upsilon(2,3 s)}$ fixed to linear extrapolation from fitted $\Upsilon(1 s)$ and $m_{\Upsilon(1,2,3 s)}$ are fixed to world averages.

Data Selection

Trigger on two muons with $p_{T}>4 \mathrm{GeV}$. Offline muon selection requires two trigger matched oppositely charged muons with $|\eta|<2.5, p_{T}>4 \mathrm{GeV}$, $4.5<m_{\mu^{+} \mu^{-}}<14 \mathrm{GeV}$ and with track ≥ 6 tracker hits and ≥ 1 pixel hit.
A likelihood ratio $R=\left(1-\Pi y_{i}\right) /\left(1+\Pi y_{i}\right)$ is constructed with dimuon vertex fit $\chi^{2} / n d o f$ and calorimeter isolation $E_{T}^{\text {cone20 }}$ (cone $\Delta R=0.2$) from both muons.
Systematic Uncertainties
Signal uncertainties $20-67 \%$ from $\epsilon_{a c c}$ from $a_{1} p_{T}$ modeling (MC@NLO vs Pythia).
Signal uncertainties 10% from $\epsilon_{\text {trig }}, 14 \% \epsilon_{\mu+\mu-}, 3 \% \epsilon_{L R}$.

NMSSM $g g \rightarrow a_{1} \rightarrow \mu^{+} \mu^{-}$at ATLAS (ii)

Muon p_{T}, dimuon $\chi^{2} / n d o f$, muon relative isolation and dimuon invariant mass.
BSMHiggs@LPC, 5 November 2014-p.20/2E

NMSSM $h \rightarrow 2 a_{1} \rightarrow 4 \gamma$ at ATLAS (i)

Signal Model

Signal generator Powheg/Pythia for $g g$ fusion and $V B F$, Pythia for $V h$ and $t \bar{t} h$. Assume SM Higgs cross sections and $100<m_{a_{1}}<400 \mathrm{MeV}$ with zero a_{1} decay length.
Fit signal distributions with Crystal Ball PDF and interpolate fit parameters between generated mass points.

Background Model
Background model from data fit with an exponential PDF outside signal region.
Excess seen in the SM $H \rightarrow 2 \gamma$ search is not significant with looser γ ID.

Data Selection

Trigger on 2γ with $E_{T}>20 \mathrm{GeV}$ with loose shower shape requirements.
Offline γ selection requires $E_{T}>25,40 \mathrm{GeV}$ with $|\eta|<1.37$ and $1.52<|\eta|<2.37$ and γ calorimeter isolation $E_{T}^{\text {cone } 40}<5 \mathrm{GeV}$.
Remove shower structure requirements on γ ID since highly collimated $a_{1} \rightarrow 2 \gamma$ are reconstructed as one γ.

Systematic Uncertainties
Signal efficiency uncertainty from trigger, γ ID, pileup and calorimeter isolation is 21%. Signal resolution uncertainty from calorimeter resolution and energy calibration is 17\%.

NMSSM $h \rightarrow 2 a_{1} \rightarrow 4 \gamma$ at ATLAS (ii)

$m_{\gamma \gamma}$ and γ calorimeter isolation (top), and structure and width shower shape variables (bottom).

NMSSM $h \rightarrow 2 a_{1} \rightarrow 4 \gamma$ at ATLAS

$m_{\gamma \gamma}$ in data with background fit (top left) and CLs limits for $m_{a}=100,200,400 \mathrm{MeV}$.
BSMHiggs@LPC, 5 November 2014 - p.23/25

Hidden Sector $H^{0} \rightarrow 2 / 4 \gamma_{d} \rightarrow L J s$ at ATLAS

Diagrams for FRVZ decays producing $2 \gamma_{d}$ and $4 \gamma_{d}$ (top), and limits on $\sigma \times B R$ (bottom).

