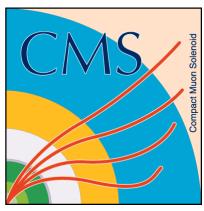
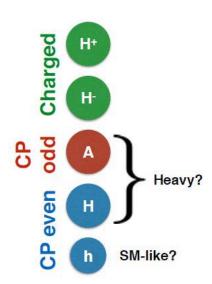
Searches for 2HDM at the LHC


Dhiman Chakraborty

On behalf of the ATLAS and CMS experiments

Outline


- Motivation
- Phenomenology
 - Basic postulates and parameters
 - Couplings and decay characteristics
 - Production at the LHC
- Experimental search
 - *CP*-even heavier neutral Higgs (*H*)
 - Charged Higgs bosons (H^{\pm})
- Summary and outlook

Motivation

- Discovery of a Higgs boson prompts further investigations into the scalar sector – it may well have a richer structure than the minimum required in SM.
- Two-Higgs doublet models (2HDM) are the simplest extension.
- 2HDM's can help explain the extent of baryon-antibaryon asymmetry in the universe - CPV allowed in SM is not enough.
- A "Type II" 2HDM is an essential feature of the MSSM, which also has an excellent candidate, the LSP, to constitute dark matter.
- Searches at LHC through additional neutral or charged Higgs bosons - are strategically straightforward.

The two-Higgs-doublet model (2HDM)

- Two complex doublet scalar (Higgs) fields with opposite hypercharge.
- Of the 8 degrees of freedom, 3 are expended in giving mass to W[±], Z.
- The remaining 5 are manifested as physical particles:
 - two neutral scalars (h, H),
 - one neutral pseudoscalar (A),
 - one charge-conjugate scalar pair (H^+, H^-) .

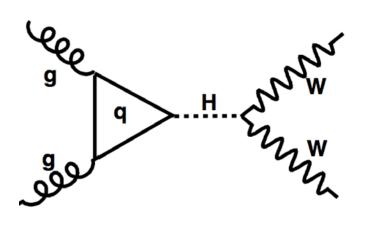
- The free parameters of the model are usually chosen as the ratio of the two VEVs, the mixing angle of CP-even fields, and the mass of H, A or H⁺.
- Four different types are defined based on how members of the fermion family couple with those of the Higgs doublets.

Type I and Type II 2HDMs

Туре	u_R	d_R	e_R	
Type I Type II Lepton-specific Flipped	$egin{array}{c} \Phi_2 \ \Phi_2 \ \Phi_2 \ \Phi_2 \end{array}$	$egin{array}{c} \Phi_2 \ \Phi_1 \ \Phi_2 \ \Phi_1 \end{array}$	$egin{array}{c} \Phi_2 \ \Phi_1 \ \Phi_1 \ \Phi_2 \ \end{array}$	~ MSSM

•
$$\tan \beta = \frac{v_2}{v_1}$$
; $m_W^2 = \frac{g^2}{2}(v_1^2 + v_2^2)$;

$$\bullet \ \, \begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} -\sin\alpha & \cos\alpha \\ \cos\alpha & \sin\alpha \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

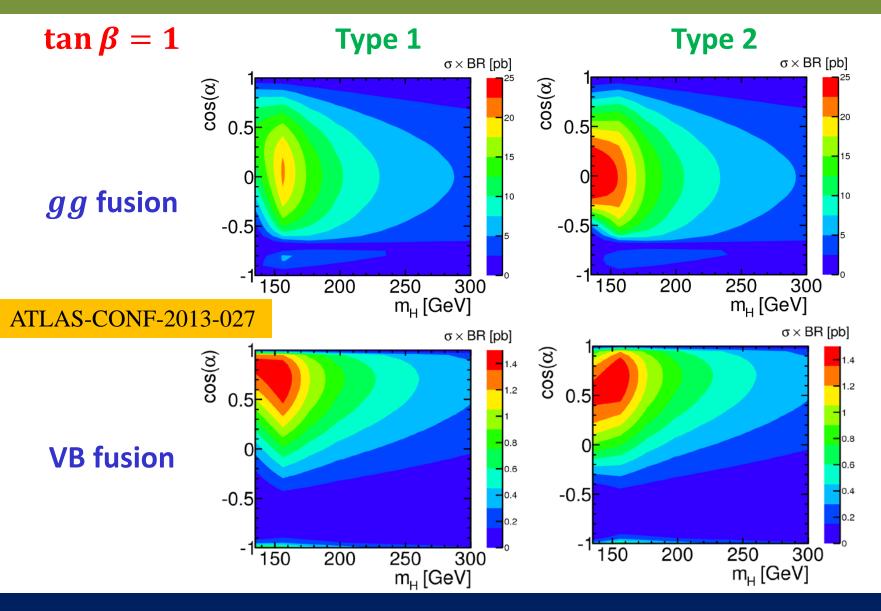

$$\psi_1, \psi_2$$
: CP-even fields

Relevant couplings:

Coupling	Type I	Type II
$\xi_h^{ ext{v}}$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
ξ^u_h	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
$_{-}$ ξ_h^d	$\cos \alpha / \sin \beta$	$-\sin \alpha / \sin \beta$
$\xi_H^{ ext{v}}$	$\cos(\beta - \alpha)$	$\cos(\beta - \alpha)$
ξ^u_H	$\sin \alpha / \sin \beta$	$\sin lpha / \sin eta$
ξ_H^d	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$

Search for the heavier CP-even Higgs boson

- Include h as a "known" part of the signal hypothesis, i.e. assume that the 125 GeV scalar boson discovered is the h of the 2HDM.
- Ensure consistent treatment of h and H w.r.t. the parameters of the model.
- Strategy: Look for $H \to WW^{(*)} \to e\nu\mu\nu$


0-jet bin

W/Z/Z H WYY

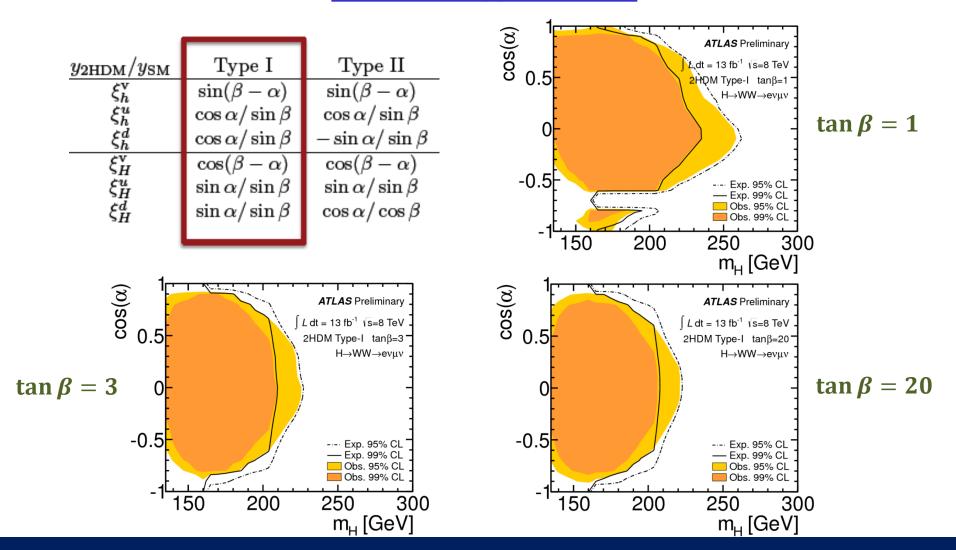
ATLAS-CONF-2013-027

2-jet bin

$\sigma(pp \to H) \times B(H \to WW^{(*)} \to e\nu\mu\nu)$

Search for $H \rightarrow WW^{(*)} \rightarrow e\nu\mu\nu$ (ATLAS)

- Isolated e, μ with $p_T(l_1) > 25$ GeV, $p_T(l_2) > 15$ GeV,
- $E_T^{miss} > 25 \text{ GeV}$ (with special consideration w.r.t. nearest lepton)
- Neural Network with 6 (9) inputs for the 0 (2) jet bin.


Dragge	ess 0 jet 2 jet	2 int	Top	WW
Process		control region	control region	
Signal ($m_h = 125 \text{ GeV}$)	2.55 ± 0.50	5.52 ± 0.71	1.35 ± 0.19	0.76 ± 0.13
Signal ($m_H = 150 \text{ GeV}$)	470 ± 140	76 ± 19	20.9 ± 5.7	16.1 ± 3.9
$WW/WZ/ZZ/W\gamma/W\gamma*$	1140 ± 290	63 ± 18	22.1 ± 6.2	1170 ± 310
Z/γ^* + jets	41 ± 15	194 ± 72	84 ± 31	15.7 ± 6.4
W+jets	135 ± 58	23.4 ± 9.7	18.3 ± 7.6	78 ± 32
$t\bar{t}/tW/tb/tqb$	175 ± 49	168 ± 77	1760 ± 440	313 ± 97
Total background	1490 ± 420	450 ± 180	1890 ± 480	1580 ± 450
S/B	0.31	0.18	_	_
Observed	1815	483	1986	1725

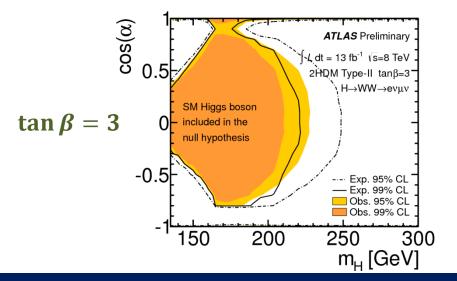
ATLAS-CONF-2013-027

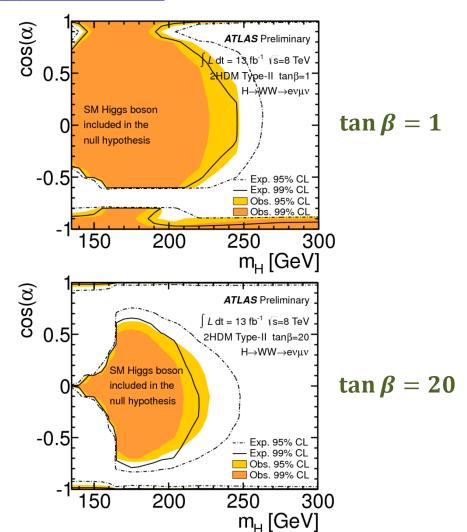
Search for $H \rightarrow WW^{(*)} \rightarrow e\nu\mu\nu$ (ATLAS)

ATLAS-CONF-2013-027

Result for Type I 2HDM

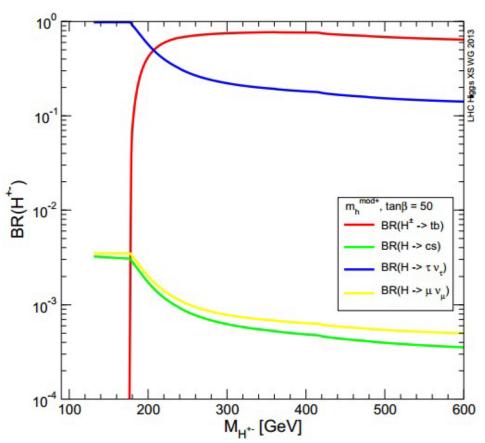



Search for $H \rightarrow WW^{(*)} \rightarrow e\nu\mu\nu$ (ATLAS)


ATLAS-CONF-2013-027

Result for Type II 2HDM

$y_{ m 2HDM}/y_{ m SM}$	Type I	Type II
$\xi_h^{ m v}$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
ξ^u_h	$\cos lpha / \sin eta$	$\cos \alpha / \sin \beta$
ξ_h^d	$\cos \alpha / \sin \beta$	$-\sin \alpha /\sin \beta$
$\xi_H^{ m v}$	$\cos(\beta - \alpha)$	$\cos(\beta - \alpha)$
ξ^u_H	$\sin \alpha / \sin \beta$	$\sin lpha/\sin eta$
ξ_H^d	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$



H⁺ decay branching fractions

Partial decay widths calculated with FeynHiggs and HDecay (using MSSM input parameters provided by FeynHiggs)

$$\begin{split} \Gamma_{H^{+}} &= \Gamma_{H^{+} \rightarrow \tau \nu} + \Gamma_{H^{+} \rightarrow \mu \nu} \\ &+ \Gamma_{H^{+} \rightarrow hW} + \Gamma_{H^{+} \rightarrow HW} + \Gamma_{H^{+} \rightarrow AW} \\ &+ \Gamma_{H^{+} \rightarrow tb} + \Gamma_{H^{+} \rightarrow ts} + \Gamma_{H^{+} \rightarrow td} \\ &+ \Gamma_{H^{+} \rightarrow cb} + \Gamma_{H^{+} \rightarrow cs} + \Gamma_{H^{+} \rightarrow cd} \\ &+ \Gamma_{H^{+} \rightarrow ub} + \Gamma_{H^{+} \rightarrow us} + \Gamma_{H^{+} \rightarrow ud} \end{split}$$

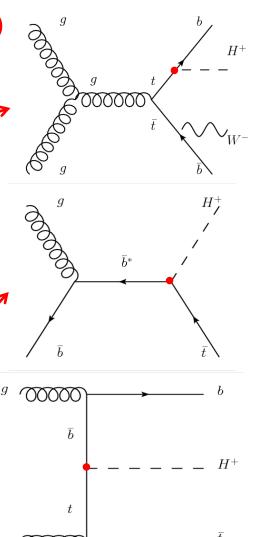
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/BRs#YR3_numbers

H⁺ production at the LHC: processes

Relevant coupling: $g(tbH^+) \sim (m_t \cot \beta + m_b \tan \beta)$

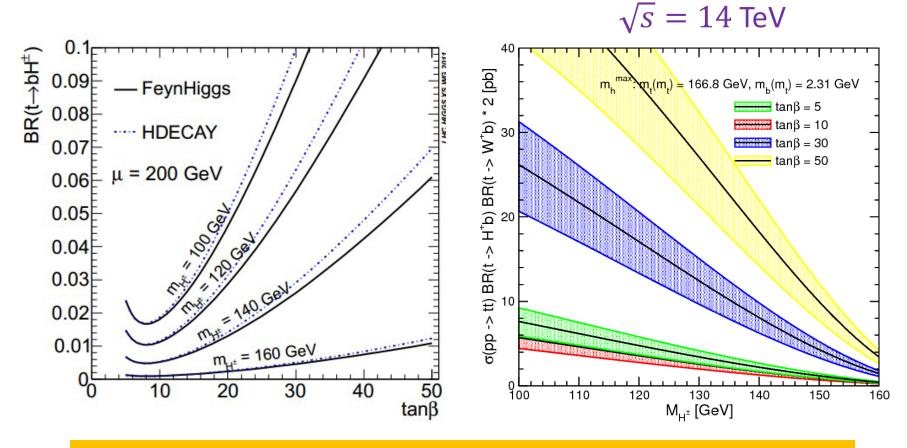
If
$$m_{H^+} < m_t$$

Primary contribution from decays of top quarks

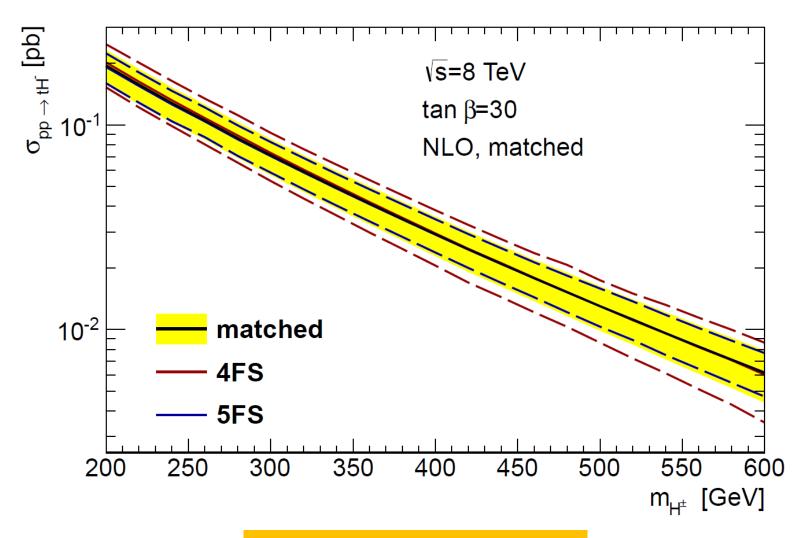

Production cross section:

 $\sigma(pp \to t\bar{t}) \times B(t \to H^+b)$ [dominant at LHC] The first factor is calculated and measured with precision better than 10%. There are several options to measure the latter.

If
$$m_{H^+}>m_t$$


Production is expected to occur primarily in association with single top quarks – replace W^+ with H^+ in SM single top production.

Production cross section is much smaller.


H⁺ production at the LHC: cross section, $m_{H^+} < \, m_t$

Partial decay widths calculated with FeynHiggs and HDecay (using MSSM input parameters provided by FeynHiggs)

https://twiki.cern.ch/twiki/pub/LHCPhysics/MSSMCharged/mhmax-tb.tar.gz

H⁺ production at the LHC: cross section, $m_{H^+}>\,m_t$

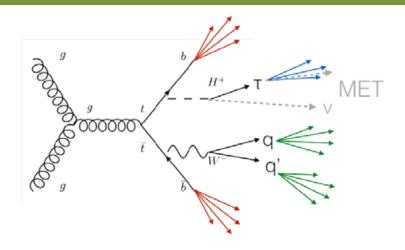
http://arxiv.org/abs/1409.5615

H⁺ search strategies at the LHC

For $m_{H^+} < m_t$

- Look for $t \to H^+b$ followed by
 - $H^+ \to \tau^+ \nu_{\tau}$ for $\tan \beta > \sim 1$
 - $H^+ \rightarrow c\bar{s}$ for $\tan \beta < \sim 1$
- $B(t \to H^+ b) \approx 0$ at $\tan \beta \approx \sqrt{\frac{m_t}{m_b}} \approx 8$: sensitivity is at minimum

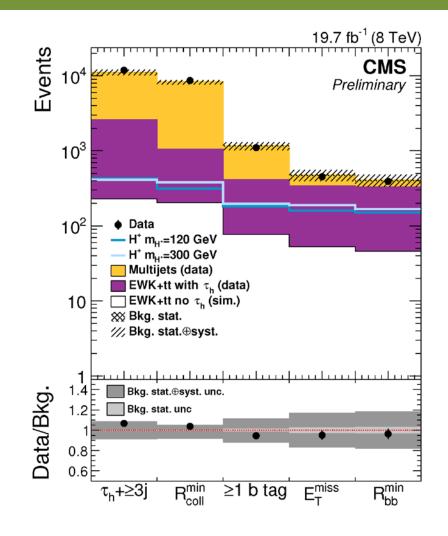
For $m_{H^+}>\,m_t$

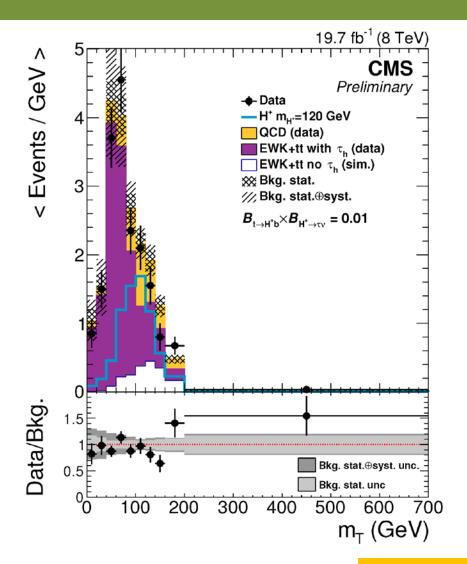

• $H^+ \to tb \to W^+ b \overline{b}$ dominates, but $H^+ \to \tau^+ \nu_{\tau}$ is cleaner with a branching fraction of ~ 0.2 if $\tan \beta > \sim 3$.

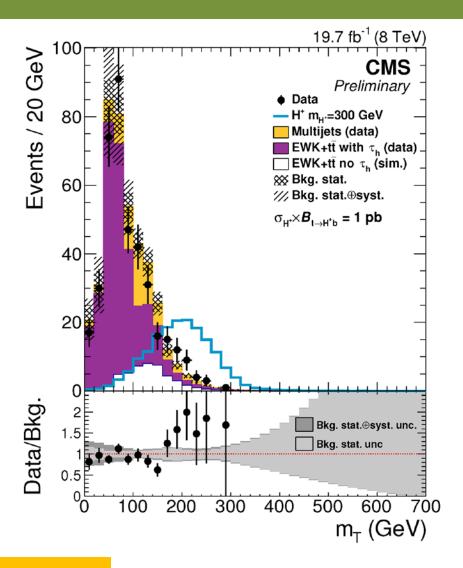
 $H^+ \to W^+ b \overline{b}$ is significant even for $\tan \beta < \sim 1$ if $m_t - m_{H^+}$ is small. However, it is very difficult to extact from the SM decay of $t \overline{t}$.

Other search strategies

- Look for tell-tale violation of lepton universality in charged current interactions among $t \bar t$ event candidates,
- Look for $H^0 \to H^{\pm}W^{\mp}$ (Higgs "cascade" decays),
- Look for $H^+ \to t\bar{b}$,
- Other all-bosonic vertices,
- Vertices involving BSM particles.

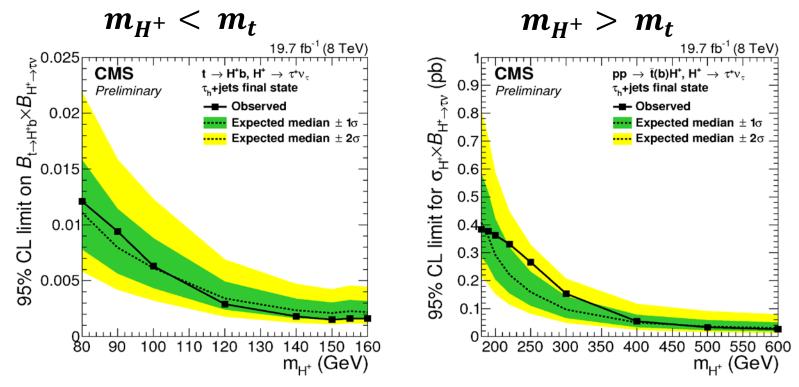

(Results are available from the first three of these)


- Use $\tau_h + E_T^{miss}$ trigger.
- Shape analysis using


$$m_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}^{\tau_{\mathrm{h}}}E_{\mathrm{T}}^{\mathrm{miss}}(1 - \cos\Delta\phi(\vec{p}_{\mathrm{T}}^{\tau_{\mathrm{h}}}, \vec{E}_{\mathrm{T}}^{\mathrm{miss}}))}$$

Dominant background: QCD multijet, EWK + $t\bar{t}$ (with or without a τ_h).

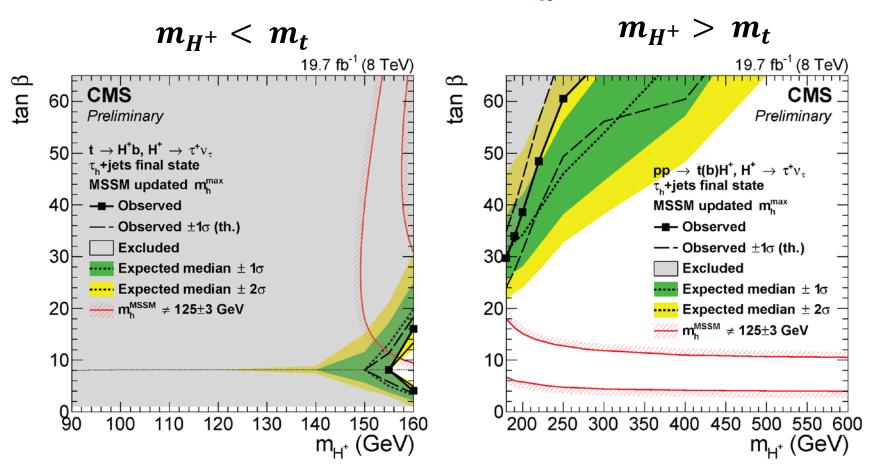
$H^+ \rightarrow \tau^+ \nu_{\tau}$ (CMS)



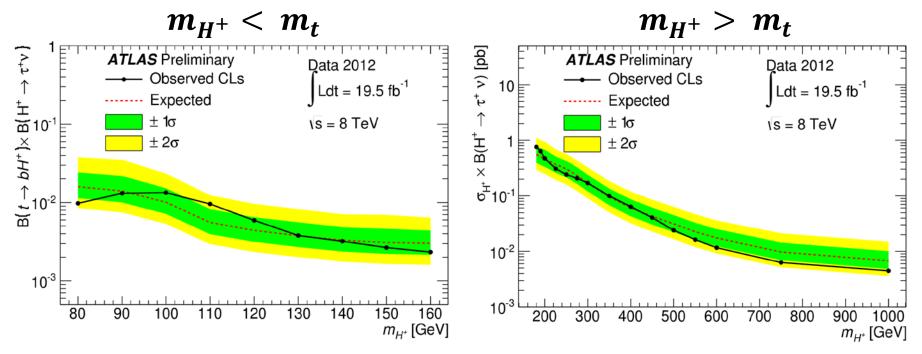
$H^+ o au^+ u_ au$ (CMS)

	$N_{ m events} \pm { m stat.} \pm { m syst.}$
Signal, $m_{\mathrm{H}^+}=120\mathrm{GeV}$	$151 \pm 4 ^{\ +17}_{\ -18}$
Signal, $m_{\mathrm{H^+}}=300\mathrm{GeV}$	$168 \pm 2 \pm 16$
Multijet background (data)	$78 \pm 3 \pm 17$
EWK+ $t\bar{t}$ with τ_h (data)	$283\pm12^{+55}_{-54}$
EWK+ $t\bar{t}$ no τ_h (sim.)	$47\pm2{}^{+11}_{-10}$
Total expected from the SM	$407\pm12^{+59}_{-58}$
Observed:	392

$H^+ \rightarrow \tau^+ \nu_{\tau}$ (CMS)



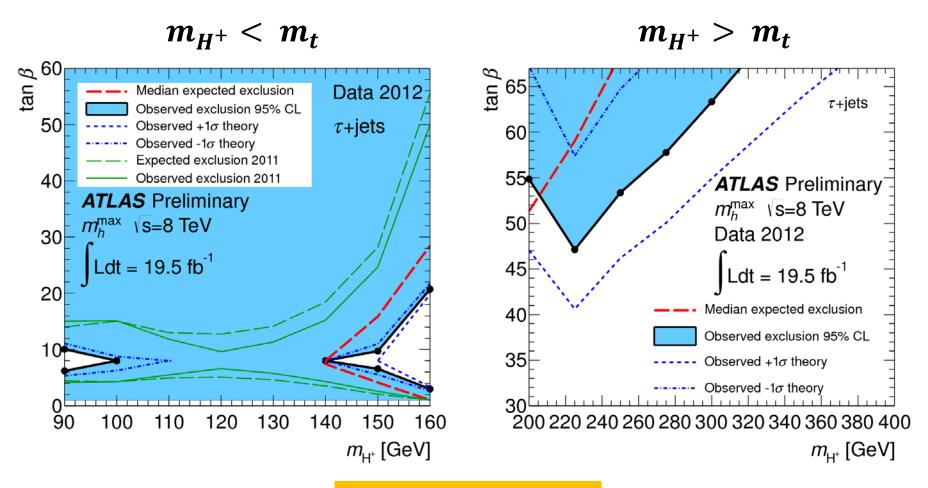
- $B(t \to H^+ b) \times B(H^+ \to \tau^+ \nu_\tau) < 0.002 0.012$ at 95% CL for $80~{\rm GeV} < m_{H^+} < 160~{\rm GeV}$
- $\sigma(pp \to H^{\pm}) \times B(H^+ \to \tau^+ \nu_{\tau}) < 0.03 0.38 \text{ pb at } 95\% \text{ CL}$


for $180 \text{ GeV} < m_{H^+} < 600 \text{ GeV}$

$H^+ o au^+ u_ au$ (CMS)

Interpretation in MSSM $m_h^{\ max}$ scenario

$H^+ ightarrow au^+ u_ au$ (ATLAS)



- $B(t \to H^+ b) \times B(H^+ \to \tau^+ \nu_\tau) <$ 0.0023 0.013 at 95% CL for 80 GeV $< m_{H^+} <$ 160 GeV
- $\sigma(pp \to H^\pm) \times B(H^+ \to \tau^+ \nu_\tau)$ < 0.004 0.76 pb at 95% CL for $180~{\rm GeV} < m_{H^+} < 1000~{\rm GeV}$

ATLAS-CONF-2014-050

Older result: $H^+ \rightarrow \tau^+ \nu_{\tau}$ (ATLAS)

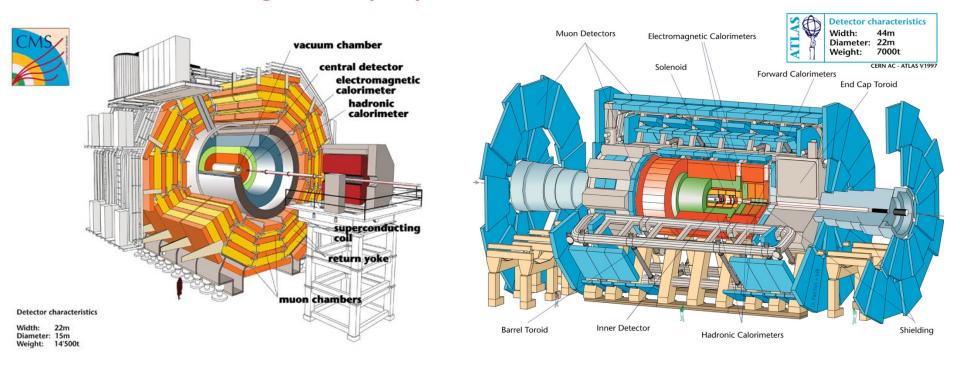
Interpretation in MSSM $m_h^{\ max}$ scenario

ATLAS-CONF-2013-090

Summary and outlook

- Both ATLAS and CMS experiments have searched for 2HDM scenarios in pp collisions up to 20 (5) fb⁻¹ of data at \sqrt{s} = 8 (7) TeV.
- In the absence of evidence of signal, limits have been set on cross sections and/or branching fractions, interpreted to exclusion in 2HDM parameter space.
- All previous direct results have been drastically improved.
- More (improved) results are expected soon.
- Higher production cross section and larger volume of data are expected to further improve results in Run 2.

BACK-UP SLIDES


Previous H⁺ search results

No evidence of H^+ production found so far. 95% CL limits:

- LEP combined:
 - $m_{H^+} > 78.6$ GeV irrespective of model.
 - $m_{H^+} > 90$ GeV assuming Type 2 2HDM, $B(H^+ \to \tau^+ \nu_\tau) = 1$.
- Tevatron (D0, CDF):
 - $B(t \to H^+ b) < [0.15 0.20]$ depending on m_{H^+} , tan β , Type 2 2HDM assumed.

ATLAS and CMS

Two general-purpose detectors for the LHC

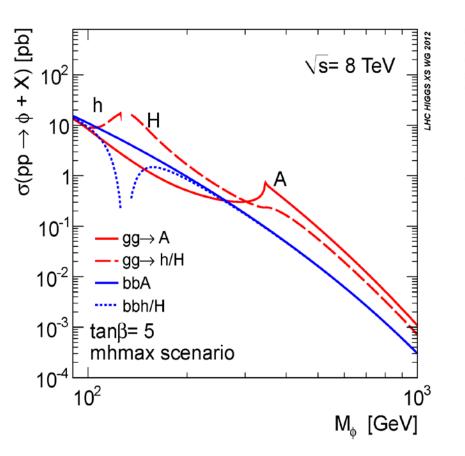
- Optimized to identify and measure electrons, photons, muons, taus, jets (q/g), missing p_T with excellent resolution & hermeticity.
- For offline analysis, multi-level triggering system select ~200 out of ~40 million bunch crossings every second.

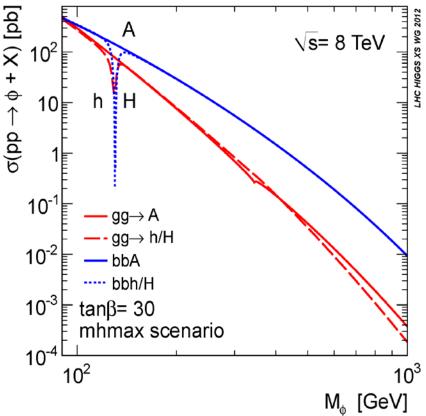
Type I and Type II 2HDMs

- FCNC naturally suppressed in both.
- Type I: all fermions couple to only one of the two Higgs doublets.
- Type II: u-types couple to one Higgs doublet, d-types to the other.

•
$$\tan \beta = \frac{v_2}{v_1}$$
; $m_W^2 = (v_1^2 + v_2^2)$;

•
$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} -\sin\alpha & \cos\alpha \\ \cos\alpha & \sin\alpha \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

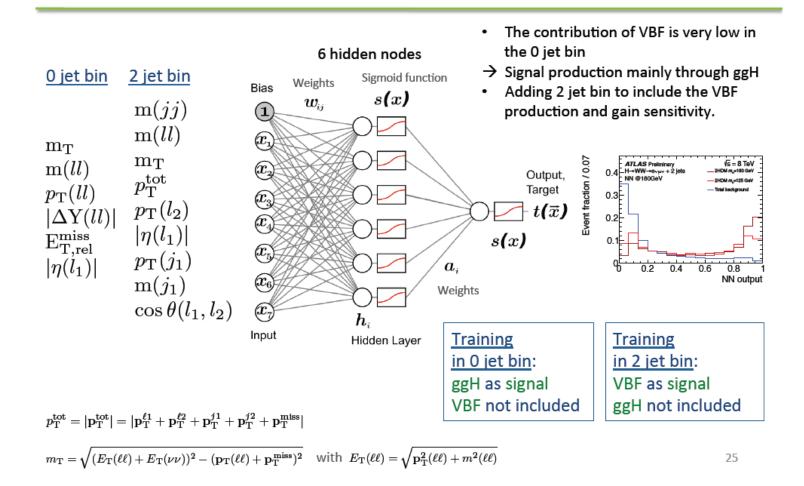

 ψ_1, ψ_2 : CP-even fields


Relevant couplings:

Coupling	Type I	Type II
$\xi_h^{ ext{v}}$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
ξ^u_h	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
ξ_h^d	$\cos \alpha / \sin \beta$	$-\sin \alpha /\sin \beta$
$\xi_H^{ ext{v}}$	$\cos(\beta - \alpha)$	$\cos(\beta - \alpha)$
ξ^u_H	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$
ξ_H^d	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$

Search for the heavier CP-even Higgs boson

Production cross section



Search for the heavier CP-even Higgs boson

Neural Network

<phi-t*

Implementation with NeuroBayes

Searches for charged Higgs bosons

• $\mathcal{L}(H^+UD) =$

$$\frac{g}{2\sqrt{2}\,m_W}(H^+UK(m_U\cot\beta\,(1-\gamma_5)+m_D\tan\beta\,(1+\gamma_5)D) + \text{ h.c.}$$

- Current H⁺ searches at LHC are focused on production and decay via interactions with SM fermions.
- H^+tb coupling is the strongest of all irrespective of $(m_{H^+}, \tan \beta) \rightarrow$ Production most likely in decay of top quarks if $m_{H^+} < m_t$, otherwise in association with the top quark.
- Decay driven by phase space (m_{H^+}) and $\tan \beta$.

Search strategies : $H^+ \rightarrow \tau^+ \nu_{\tau}$

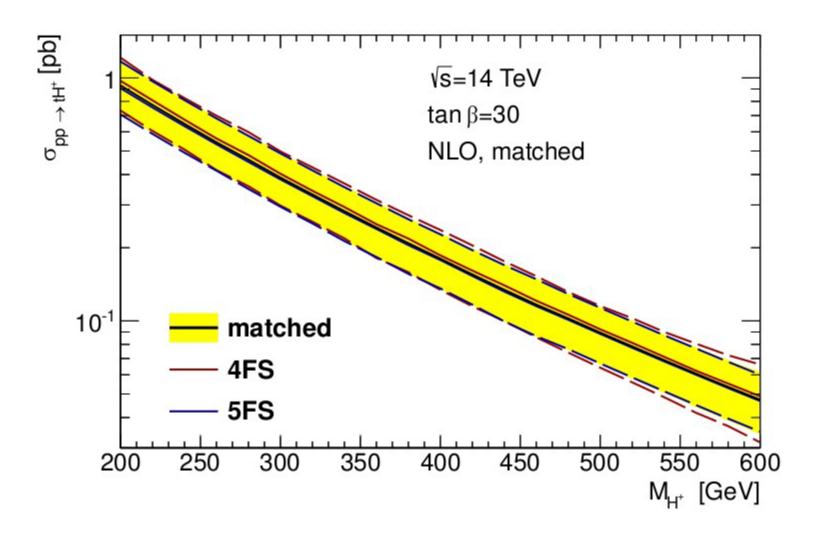
Look for a high- p_T τ decaying into hadrons

- $B(\tau_h) \approx 0.65$ with ~ 0.5 to "1-prong", ~ 0.15 to "3-prong".
- Collimated energy deposits with low track-multiplicity, often with identifiable EM contribution from π^0 's in τ decay.

Challenges:

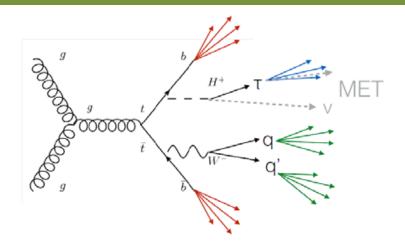
- A good fraction of the τ momentum is carried away by the ν_{τ} in decay. Only the remaining part is directly visible (τ_{vis}) .
- Multiple ν 's in the event weakens the usefulness of E_T^{miss} .
- Large QCD background (quark- and gluon-initiated jets being misidentified as τ 's). Hurts efficiency, especially at the trigger level, unless the event also features a high- p_T e or μ .

Search strategies : $H^+ \rightarrow c\bar{s}$


Look for $t\bar{t}$ events with one top decaying into 3 jets: $t \to H^+b \to c\bar{s}b$

- $m_{j_1j_2} = m_{H^+};$
- $m_{j_1 j_2 j_3} = m_t$, possibly with $j_3 = b$.

Challenges:


- In order to have any hope against the enormous QCD background, especially at the trigger level, the other top must decay into a high- $p_T e$ or μ .
- Loss of discrimination if m_{H^+} is close to m_{W^+} .
- Competition from $H^+ \to W^+ b \bar{b}$ as m_{H^+} approaches m_t .
- Serious combinatorics from ISR, FSR, pile-up jets.

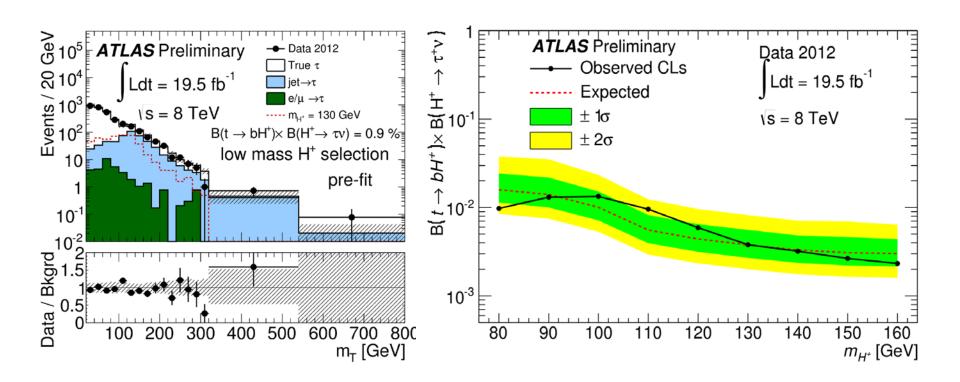
H⁺ production at the LHC: cross section, $m_{H^+}>\,m_t$

http://arxiv.org/abs/1409.5615

$H^+ ightarrow au^+ \, u_ au$ (ATLAS)

- Use $\tau + E_T^{miss}$ trigger.
- Look for excess in $m_T(\tau, E_T^{miss})$ distribution.

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\tau}E_{\rm T}^{\rm miss}(1-\cos\Delta\phi_{\tau_{\rm had-vis},{\rm miss}})}$$

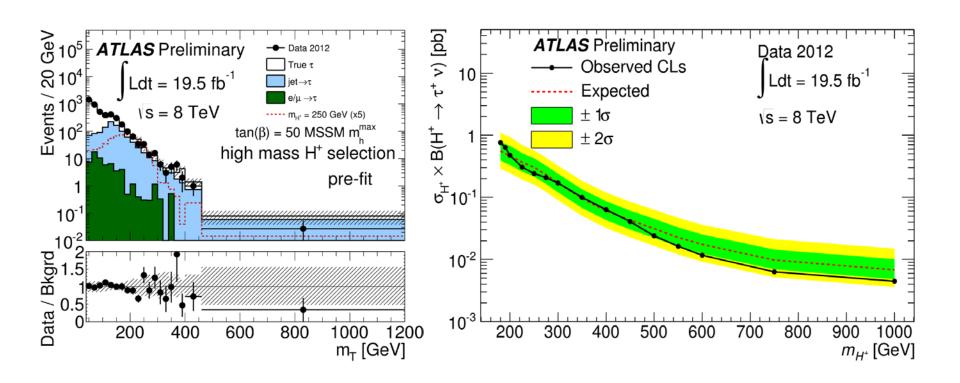

• Dominant background: SM $t\bar{t}$, QCD multi-jet.

- For $m_{H^+} < m_t$ search, assume $B(H^+ \to \tau^+ \nu_\tau) = 1$ to derive limits on $B(t \to H^+ b)$.
- For $m_{H^+} > m_t$, use similar event selection, but allow other decay modes to derive limits on

$$\sigma(pp \to H^{\pm}) \times B(H^+ \to \tau^+ \nu_{\tau}).$$

ATLAS-CONF-2014-050

$H^+ ightarrow au^+ u_ au$; $m_{H^+} < m_t$ (ATLAS)

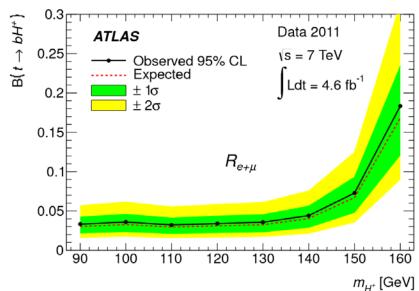


 $B(t \to H^+ b) < 0.0023 - 0.013$ at 95% CL for 80 GeV $< m_{H^+} < 160$ GeV

ATLAS-CONF-2014-050

36/24

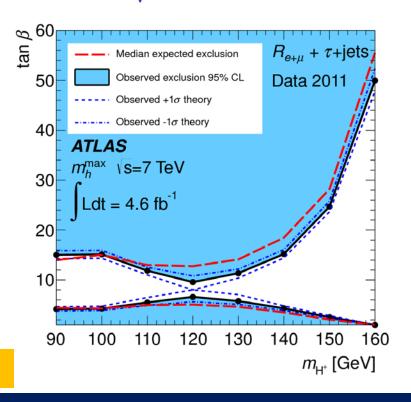
$H^+ ightarrow au^+ u_ au; \; m_{H^+} > m_t \; ag{ATLAS}$


$$\sigma(pp \to H^\pm) \times B(H^+ \to \tau^+ \nu_\tau) < 0.004$$
 - 0.76 pb at 95% CL for 180 GeV $< m_{H^+} < 1000$ GeV

ATLAS-CONF-2014-050

lepton universality; $m_{H^+} < m_t$ (ATLAS)

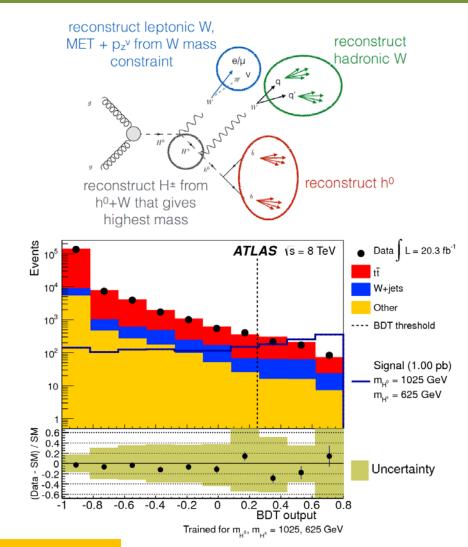
- Assume $B(H^+ \rightarrow \tau^+ \nu_{\tau}) = 1$
- Compare $e+\tau_h$, $\mu+\tau_h$ yields to that of $e+\mu$


$$R_{e+\mu} = \frac{\mathcal{N}(e + \tau_{\text{had}}) + \mathcal{N}(\mu + \tau_{\text{had}})}{\mathcal{N}(e + \mu) + \mathcal{N}_{\text{OR}}(\mu + e)}$$

 $B(t \to H^+ b)$ < 0.033 - 0.044 at 95% CL for 90 GeV < m_{H^+} < 140 GeV

JHEP03 (2013) 076

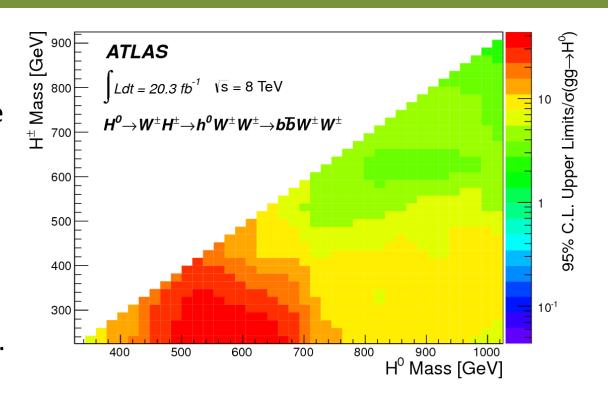
• Combined with τ_h + jets, gave best results for $\sqrt{s} = 7$ TeV.



$H^0 ightarrow H^{\pm}W^{\mp} ightarrow h^0W^+W^-$ (ATLAS)

Look for

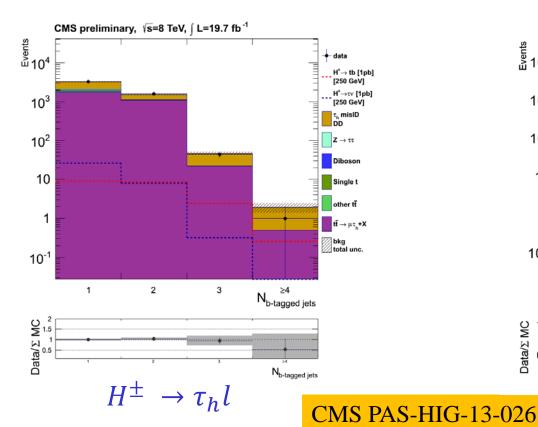
$$H^0 \to H^{\pm}W^{\mp} \to h^0W^{\pm}W^{\mp} \to b\bar{b}l\nu jj$$

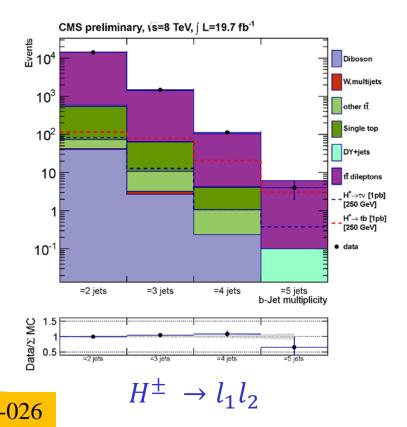

- Fairly model-independent (A too heavy to appear in decay chain).
- Exploit $m_{bb} = m_{h^0} = 125$ GeV.
- Same final state as semileptonic decay of $t\bar{t}$ in SM.
- BDT trained at 36 mass points of H^0 to discriminate against SM $t\bar{t}$ events.

PRD 89 (2014) 032002

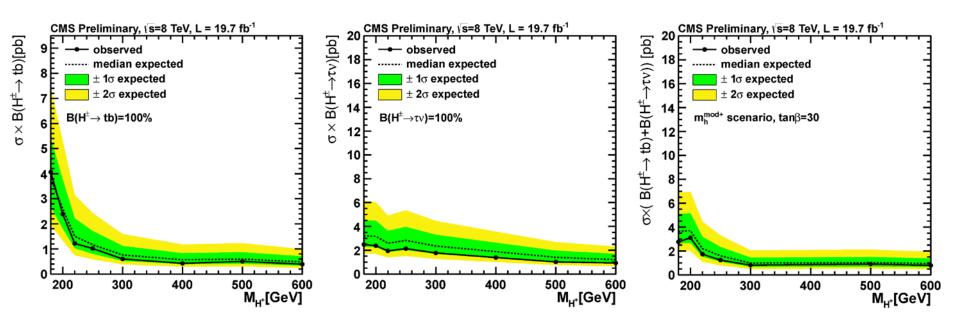
$H^0 ightarrow H^{\pm}W^{\mp} ightarrow h^0W^+W^-$ (ATLAS) [contd.]

The ratio of the observed 95% CL upper limits on the cross section to the theoretical cross section for $gg \to H^0 \to H^\pm W^\mp \to h^0 W^\pm W^\mp \to W^\pm W^\mp b \bar{b}$ on the $[m_{H^0}, m_{H^+}]$ plane.

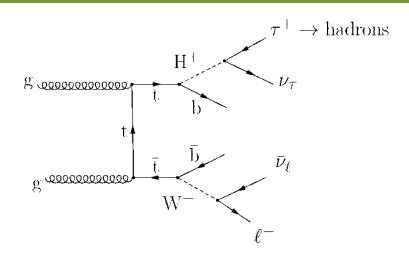



Observed upper limits are higher than theoretical expectation, but approaching it for larger H^0 masses.

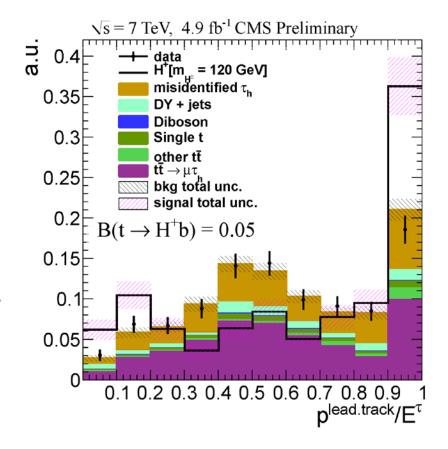
PRD 89 (2014) 032002


$H^+ ightarrow au^+ u_ au$ or $t \overline{b}; \;\; m_{H^+} > m_t$ (CMS)

- Combined search in the $\tau_h l$ and $l_1 l_2$ final state $l_{(1,2)} = e$, μ .
- Trigger on the isolated lepton (e, μ) .
- Binned maximum likelihood fit to the number of b-tagged jets.



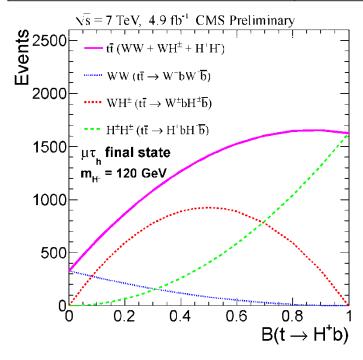
$H^+ ightarrow au^+ u_ au$ or $t \overline{b}$; $m_{H^+} > m_t$ (CMS) [contd.]

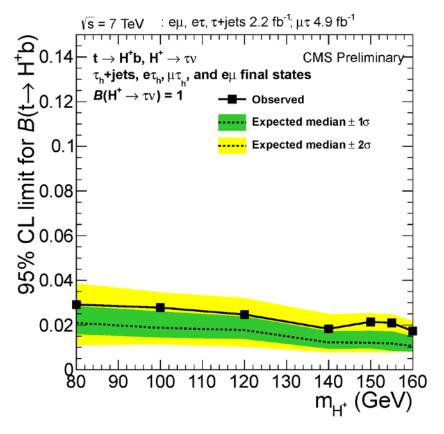


$$\sigma(pp \to H^\pm) \times B\big(H^+ \to t\overline{b}\big) < \sim 1 - 2 \text{ pb},$$

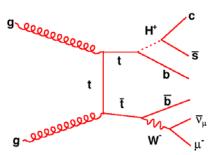
$$\sigma(pp \to H^\pm) \times B(H^+ \to \tau^+ \nu_\tau) < \sim 4 - 5 \text{ pb},$$
 at 95% CL for 180 GeV $< m_{H^+} < 600$ GeV

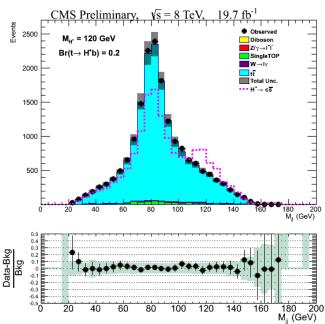
$H^+ ightarrow au^+ u_ au; \; m_{H^+} < \; m_t \; ext{(CMS)}$

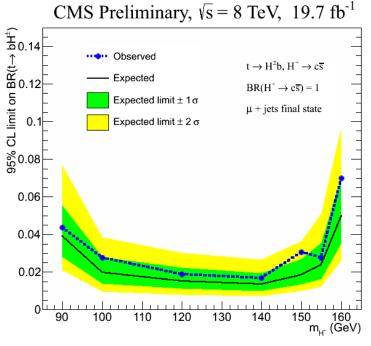



- Search in the $\tau_h l$ final state $l=e,\mu$
- Binned maximum likelihood fit to $R = p^{lead.track}/E_{\tau}$ distribution. This quantity is sensitive to τ polarization, which is different between τ 's from H^+ and W^+ decays.

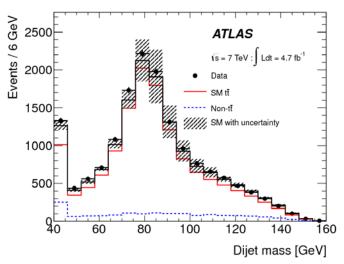
$H^+ ightarrow au^+ u_ au$; $m_{H^+} < m_t$ (CMS) [contd.]

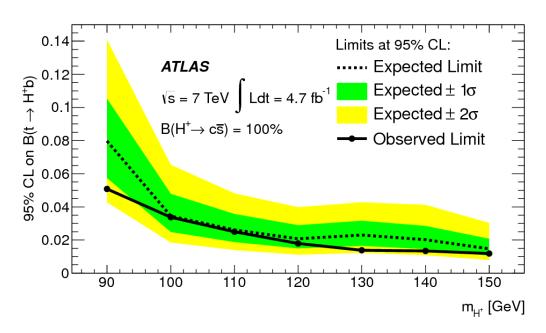

Source	N_{events} (\pm stat. \pm syst.)
HH+HW, m_{H^+} =120 GeV, \mathcal{B} (t → H ⁺ b)=0.05	$179.3 \pm 8.7 \pm 22.1$
au fakes (from data)	222.0 ± 11.4
$t\bar{t} \to WbWb \to (\mu\nu b) (\tau_h\nu b)$	$304.7 \pm 2.8 \pm 25.9$
$t\bar{t} \to WbWb \to (\ell \nu b) (\ell \nu b)$	$21.4 \pm 0.7 \pm 6.9$
$Z/\gamma^* \rightarrow ee, \mu\mu$	$0.4 \pm 0.4 \pm 0.1$
$Z/\gamma^* o au au$	$50.6 \pm 17.6 \pm 20.7$
Single top	$26.6 \pm 1.2 \pm 3.3$
VV	$4.4 \pm 0.5 \pm 0.7$
Total expected from SM	$630.1 \pm 17.9 \pm 46.9$
Data	620




$$B(t \to H^+ b)$$
 < 0.03 – 0.02 at 95% CL for 80 GeV < m_{H^+} < 160 GeV

$H^+ ightarrow c \overline{s}; \;\; m_{H^+} < m_t \; ext{(CMS)}$


- Assume $B(H^+ \to c\bar{s}) = 1$.
- Same final state as semileptonic decay of $t\bar{t}$ in SM
- Kinematic fit to both top candidates


 $B(t \to H^+ b) < 0.017 - 0.07$ at 95% CL for 90 GeV $< m_{H^+} < 160$ GeV

$H^+ o c \overline{s}; \; m_{H^+} < m_t \; (ATLAS)$

Channel	Muon	Electron
Data	10107	5696
SM $t\bar{t} \rightarrow W^+bW^-\bar{b}$	8700 ± 1800	5000 ± 1000
W/Z + jets	420 ± 120	180 ± 50
Single top quark + Diboson	370 ± 60	210 ± 30
QCD multi-jet	300 ± 150	130 ± 60
Total expected (SM)	9800 ± 1800	5500 ± 1000
$m_{H^+} = 110 \text{ GeV}$		
$\mathcal{B}(t \to H^+ b) = 10 \%:$		
$t\bar{t} \to H^+ b W^- \bar{b}$	1400 ± 280	800 ± 160
$t\bar{t} \to W^+ b W^- \bar{b}$	7000 ± 1400	4000 ± 800
Total expected ($\mathcal{B} = 10 \%$)	9500 ± 1700	5300 ± 1000

- Assume $B(H^+ \rightarrow c\bar{s}) = 1$.
- Same final state as semileptonic decay of $t\bar{t}$ in SM
- Likelihood fit to dijet mass for H⁺candidate.

$$B(t \to H^+ b) < 0.01 - 0.05$$
 at 95% CL for $90 \text{ GeV} < m_{H^+} < 150 \text{ GeV}$

Eur. Phys. J. C (2013) 73: 2465