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Higgs: Discovery to Precision
1.2 Coupling Measurements 13
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Figure 1-1. Left: summary of the ATLAS coupling scale factor measurements for di↵erent models. The
solid vertical lines are the best-fit values while the dark- and light-shaded band represent the total ±1� and
±2� uncertainties. The curves are distributions of the likelihood ratios. Right: summary of the CMS fits
for deviations in the coupling for the generic six-parameter model including e↵ective loop couplings. The
result of the fit when extending the model to allow for beyond-SM decays while restricting the coupling to
vector bosons to not exceed unity (V  1.0) is also shown.

the result in the table. These projections are based on the analysis of 7 and 8 TeV data, not all final states
have been explored. They are expected to improve once more final states are included. CMS has considered
two scenarios of systematic uncertainties:

• Scenario 1: all systematic uncertainties are left unchanged (note that uncertainty reductions from
increased statistics in data control regions are nevertheless taken into account);

• Scenario 2: the theoretical uncertainties are scaled by a factor of 1/2, while other systematic uncer-
tainties are scaled by the square root of the integrated luminosity, i.e., 1/

pL.

The ranges of the projections in the table represent the cases with and without theoretical uncertainties for
ATLAS and two scenarios of systematic uncertainties for CMS.

The estimates from ATLAS and CMS are similar for most of the final states with a few notable exceptions.
ATLAS has no estimate for H ! bb̄ at this time, it’s estimate for H ! ⌧⌧ was based on an old study and
significant improvement is expected. The large di↵erence between the two H ! Z� estimates needs to be
understood. For these reasons, CMS projections are taken as the expected LHC per-experiment precisions
below.

Community Planning Study: Snowmass 2013

Current status: ~10-20% precision on 
some couplings (V, g, gamma)



Future: Higgs Precision Program20 Higgs working group report
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Figure 1-3. Measurement precision on W , Z , � , and g at di↵erent facilities.

A number of studies have presented results combining measurements from di↵erent facilities [88, 89]. A
general observation is that the precision in the measurement of many Higgs coupling at a new facility are
reasonably or significantly improved, and these quickly dominate the combined results and overall knowledge
of the relevant coupling parameters. Exceptions are the measurements of the branching fractions of rare
decays such as H ! �� and H ! µ+µ� where results from new lepton colliders would not significantly
improve the coupling precisions driving these decays. However, precision measurements of the ratio of Z/�

at hadron colliders combined with the high-precision and model-independent measurements of Z at a lepton
collider would substantially increase the precision on � .

Community Planning Study: Snowmass 2013

• 2-5% precision achievable at the HL-LHC

• 0.1% precision on V, 1% on g and gamma at e+e- Higgs factories

• At or almost at precision electroweak levels! 

Snowmass Higgs Report



Electroweak Phase Transition

• At high temperatures (e.g. in the early Universe), electroweak 
symmetry is restored: 	



• Electroweak Phase Transition into the current broken-EW phase 
occurred about          sec after the Big Bang (                       )	



• Baryon asymmetry may have been produced during this phase 
transition - “electroweak baryogenesis”	



• A strongly first-order transition is required for successful EWBG	



• In the SM, transition is second order; BSM physics at the weak 
scale can modify dynamics, inducing a 1st order transition



First-Order EWPT in Cartoons

• “Transition strength” ~ entropy release

• Numerical studies: EW Baryogenesis possible if 

• Otherwise, sphelaron washout of the baryon number



HC and EWPT
• No possibility of producing “plasma” with restored EW 

symmetry (T-RHIC?) so no direct experimental probe	



• However, hard to induce large modifications of the finite-T 
potential without also modifying T=0 Higgs potential and 
couplings 	



• Can precise measurements of Higgs couplings conclusively 
probe the nature of EWPT?	



• Two basic mechanisms for first-order EWPT: tree-level mixing 
with other scalars; and loop-induced corrections (the famous 
Th^3 term) 	



• We focused on loop-y models since they seem harder to 
probe* [* a study of tree-y models is now in progress…]



• The cubic term at high-T is induced by loops of scalars, not fermions	



• Add a single complex scalar     , with 	



• One-loop corrections to the potential at both T=0 and finite-T are well known:	



!

• The key object is the Higgs-dependent      mass! But recall:	



!

!

• Expect direct correlation between the size of the cubic coupling induced at finite-T 
and non-SM contributions to           and           (unless     is color and EM-neutral)

HC and EWPT: Setup

2.1 Higgs Potential and Electroweak Phase Transition: The SM and Be-

yond

In this paper, we assume that electroweak symmetry breaking is due to a single SM

Higgs doublet H, with a tree-level potential given by

V0 = �µ2|H|2 + �|H|4. (2.1)

The measured Higgs vacuum expectation value (vev) v = µ/
p

� = 246 GeV and Higgs

boson mass m
h

=
p

2µ = 126 GeV determine the coe�cients of this potential:

µ ⇡ 90 GeV, � ⇡ 0.13. (2.2)

We assume that the dominant BSM correction to Higgs physics comes from loops of a

single non-SM scalar field �, whose tree-level contribution to the scalar potential is of

the form

V� = m2
0|�|2 + |�|2|H|2 + ⌘|�|4. (2.3)

We do not fix the SM gauge quantum numbers of � at this point; we will consider

several possibilities as described in Sec. 2.3.

To study the EWPT dynamics, consider the e↵ective finite-temperature potential

Ve↵('; T ), where T is temperature. Physically, this object is just the free energy of the

field configuration with a constant, spatially homogeneous Higgs field

Hbg = (0,
'p
2
) , (2.4)

and all other fields set to zero. Including one-loop quantum corrections, the e↵ective

potential has the form

Ve↵('; T ) = V0(Hbg) + V1(') + V
T

('; T ) , (2.5)

where V1 is the one-loop contribution to the zero-temperature e↵ective potential (also

known as Coleman-Weinberg potential), and V
T

is the thermal correction [? ? ]. Both

V1 and V
T

receive contributions from all particles coupled to the Higgs. A particle’s

contribution to both V1 and V
T

is determined by its multiplicity g
i

, its fermion number

F
i

, and its mass in the presence of a background Higgs field (or Higgs-dependent mass

for short), m
i

('):

V1(') =
g

i

(�1)Fi

64⇡2


m4

i

(') log
m2

i

(')

m2
i

(v)
� 3

2
m4

i

(') + 2m2
i

(')m2
i

(v)

�
; (2.6)

V
T

('; T ) =
g

i

T 4(�1)Fi

2⇡2

Z 1

0

dx x2 log

"
1� (�1)Fi exp

 r
x2 +

m2
i

(')

T 2

!#
, (2.7)
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level. We focus on the couplings of the Higgs to gluons and photons. At the one-loop order,

the contributions of particles with masses � m
h

to these couplings are described by e↵ective

operators,

L
h��

=
2↵

9⇡v
C

�

hF
µ⌫

F µ⌫ , L
hgg

=
↵

s

12⇡v
C

g

hG
µ⌫

Gµ⌫ . (10)

The Wilson coe�cients can be found using the well-known “low-energy theorems” [2]:

C
�

= 1 +
3

8

Dirac fermionsX

f

N
c,f

Q2
f

@ ln m2
f

(v)

@ ln v
+

3

32

scalarsX

s

N
c,s

Q2
s

@ ln m2
s

(v)

@ ln v
,

C
g

= 1 +
Dirac fermionsX

f

C(r
f

)
@ ln m2

f

(v)

@ ln v
+

1

4

scalarsX

s

C(r
s

)
@ ln m2

s

(v)

@ ln v
, (11)

where the first term is the contribution of the SM top loops, the sum runs over the top partners,

and N
c,i

and Q
i

are the dimension of the SU(3)
c

representation and the electric charge (in units

of electron charge) of the particle i. Note that the exact same objects, the Higgs-dependent

masses of top partners m
i

(h), enter the CW potential and the Higgs couplings, providing a very

general and robust connection between these quantities. In the approximation of Eq. (6), we

obtain

C
�

⇡ 1 +
3

4

X

f

N
c,f

Q2
f

c
f

v2

m2
0,f

+ c
f

v2
+

3

16

X

s

N
c,s

Q2
s

c
s

v2

m2
0,s

+ c
s

v2
,

C
g

⇡ 1 + 2
X

f

C(r
f

)c
f

v2

m2
0,f

+ c
f

v2
+

1

2

X

s

C(r
s

)c
s

v2

m2
0,s

+ c
s

v2
. (12)

The set of coe�cients {m0,i

, c
i

} determines both the fine-tuning � and the Wilson coe�cients,

generically resulting in a correlation between these quantities. Assuming that there are no other

non-SM contributions to the Higgs couplings to photons and gluons, the deviations of these

couplings from the SM in the presence of top partners are given by

R
g

⌘ g(hgg)

g(hgg)|SM
= C

g

, R
�

⌘ g(h��)

g(h��)|SM
⇡ 1� 0.27 (C

�

� 1) , (13)

where the contribution of the W loop has been taken into account in the photon coupling.

It should be noted that in the above discussion, we assumed that the top loop contribution to

the Higgs couplings is exactly equal to its value in the SM. In some relevant models of new physics,

this assumption is not valid, due to deviations of the top Yukawa from its SM value. Little Higgs

models provide an example. In Little Higgs, the shift in the top loop contribution to hgg and

h�� couplings is of the same order as the top partner loop contributions to these couplings [10];

moreover, a cancellation between these e↵ects may occur due to the specific structure of the top
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Analytic Example
• A special case can be studied analytically*:  	



• High-temperature expansion of the thermal potential:	



!

• Location of the broken-symmetry minimum at finite T: 	



• Critical temperature:	



• Solve together:	



• Strongly 1-st order if	



• Gluon-Higgs coupling: 

3 EWPT/Higgs Coupling Connection: Analytic Treatment

Before presenting numerical results, let us consider a much-simplified treatment of the

problem which can be carried through analytically. Even though the approximations

made here are often not strictly valid in examples of real interest, this analysis never-

theless provides a qualitatively correct and useful illustration of the physics involved.

To drive a first-order EWPT, the BSM scalar � should provide the dominant loop

contribution to the Higgs thermal potential at T ⇠ T
c

. Let us therefore ignore the SM

contributions. If T
c

is significantly higher than all other mass scales in the problem,

a high-temperature expansion of the thermal potential can be used to analyze the

phase transition, and zero-temperature loop corrections to the e↵ective potential can

be ignored. For simplicity, we will also omit the resummed daisy graph contributions

to the thermal potential. In this approximation,

V
T

('; T ) ⇡ g�m2
�(')T 2

24
� g�m3

�(')T

12⇡
+ . . . (3.1)

The � mass in the presence of a background Higgs field is given by

m2
�(') = m2

0 +


2
'2. (3.2)

If m0 is su�ciently small, the second term in the thermal potential (3.1) is e↵ectively

cubic in '. Such a negative '3 term can result in a stable EWSB minimum of the

potential at high temperature, as required for first-order EWPT. Motivated by this, let

us consider the case m0 = 0, which allows for simple analytic treatment. The e↵ective

potential is

Ve↵('; T ) = V0(') + V
T

('; T ) ⇡ 1

2

✓
�µ2 +

g�T 2

24

◆
'2 � g�3/2T

24
p

2⇡
'3 +

�

4
'4. (3.3)

The unbroken symmetry point ' = 0 is a local minimum as long as

g�T 2

24
� µ2 > 0. (3.4)

The location of the other minimum is given by the larger root, '+, of the quadratic

equation

�'2 � g�3/2T

8
p

2⇡
'� µ2 +

g�T 2

24
= 0. (3.5)

The critical temperature T
c

for the first-order transition is determined by the condition

V (0; T
c

) = V ('+(T
c

); T
c

). (3.6)
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Solving Eqs. (3.5), (3.6) yields

T 2
c

=
24µ2

g�
⇣
1� g�

2

24⇡

2
�

⌘ , '+(T
c

) =
g�3/2T

c

12
p

2⇡�
. (3.7)

Requiring that a first-order transition occurs, T 2
c

> 0, and is strongly first-order,

'+(T
c

)/T
c

> 1, yields a range of acceptable values of :

5.5

g
1/2
�

>  >
3.6

g
2/3
�

. (3.8)

As an example, consider a color-triplet, weak-singlet � field, as in the “RH stop” or

“Exotic Triplet” benchmark models of Table 1. In this case, our estimate suggests that

a strongly first-order transition occurs for values of  between 1.1 and 2.2. At the same

time, the � loop contribution to the Higgs-gluon coupling is

R
g

=
1

8

v2

m2
0 + v2

. (3.9)

In the limit m2
0 ⌧ v2, which for  ⇠ 1 corresponds to a broad range of m0, we obtain

R
g

⇡ 1/8, or a 12.5% enhancement in the hgg coupling compared to the SM. In fact,

even larger enhancements are possible for negative values of m2
0. Of course, the hgg

deviations from the SM become small when m2
0 � v2; however, in this regime, the �

mass is well above the weak scale, and it does not a↵ect the EWPT dynamics either.

Thus, models with first-order EWPT should produce a large e↵ect, of order 10% or

more, in the Higgs-gluon coupling. This conclusion will be confirmed by the numerical

analysis in the following section.

4 Results

We developed a numerical code to analyze the dynamics of the electroweak phase

transition in each of the benchmark models listed in Table 1. Given the model and the

values of the free parameters, m0,  and ⌘, the code computes the e↵ective potential

as a function of temperature, Eq. (2.5), and identifies the critical temperature T
c

. The

x integral in the finite-temperature potential (2.7) is performed numerically, with no

high-temperature approximation. This is important since the critical temperature in

our models is typically of order 100 GeV, which is at the same scale as the masses of

the particles involved. To identify the region in the parameter space of a given model

where a strongly first-order phase transition occurs, we compute T
c

and ⇠ on a dense

– 12 –

The location of the other minimum is given by the larger root, '+, of the quadratic

equation

�'2 � g�3/2T

8
p

2⇡
'� µ2 +

g�T 2

24
= 0. (3.5)

The critical temperature T
c

for the first-order transition is determined by the condition

V (0; T
c
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c
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2
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g�3/2T
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12
p

2⇡�
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Requiring that a first-order transition occurs, T 2
c

> 0, and is strongly first-order,

'+(T
c

)/T
c

> 1, yields a range of acceptable values of :

5.5

g
1/2
�

>  >
3.6

g
2/3
�

. (3.8)

As an example, consider a color-triplet, weak-singlet � field, as in the “RH stop” or

“Exotic Triplet” benchmark models of Table 1. In this case, our estimate suggests that

a strongly first-order transition occurs for values of  between 1.1 and 2.2. At the same

time, the � loop contribution to the Higgs-gluon coupling is

R
g

=
1

8

v2

m2
0 + v

2

2

. (3.9)

In the limit m2
0 ⌧ v

2

2 , which for  ⇠ 1 corresponds to a broad range of m0, we obtain

R
g

⇡ 1/4, or a 25% enhancement in the hgg coupling compared to the SM. In fact,

even larger enhancements are possible for negative values of m2
0. Of course, the hgg

deviations from the SM become small when m2
0 � v

2

2 ; however, in this regime, the �

mass is well above the weak scale, and it does not a↵ect the EWPT dynamics either.

Thus, models with first-order EWPT should produce a large e↵ect, of order 10% or

more, in the Higgs-gluon coupling. This conclusion will be confirmed by the numerical

analysis in the following section.

4 Results

We developed a numerical code to analyze the dynamics of the electroweak phase

transition in each of the benchmark models listed in Table 1. Given the model and the
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Numerical Studies
• In general, no analytic solution for critical T and order parameter - solve 

numerically	



• Numerical code also includes SM contributions, “daisy resummations” etc.	



• Analyzed a few toy models, representative of the range of possibilities for 
quantum numbers of the      field

where � is electrically charged, this deviation can be easier to probe than deviation in

the h�� coupling, given the projected experimental sensitivities in the two channels at

e+e� Higgs factories.

2.3 Benchmark Models

Model (SU(3), SU(2))
U(1) g� C3 C2

⇧W
g

2
T

2
⇧B

g

02
T

2
�⇧h
T

2

“RH stop” (3̄, 1)�2/3 6 4/3 0 11/6 107/54 1/4

Exotic triplet (3, 1)�4/3 6 4/3 0 11/6 131/54 1/4

Exotic sextet (6̄, 1)8/3 12 10/3 0 11/6 227/54 1/2

“LH stau” (1, 2)�1/2 4 0 3/4 2 23/12 1/6

“RH stau” (1, 1)1 2 0 0 11/6 13/6 1/12

Singlet (1, 1)0 2 0 0 11/6 11/6 1/12

Table 1. Benchmark models studied in this paper.

To illustrate the connection between EWPT dynamics and Higgs couplings, we

will study several benchmark models, which di↵er in the SM gauge quantum numbers

assigned to the BSM scalar field �. The models are summarized in Table 1. Note that

we label some of the models with the names of a SUSY particle with quantum numbers

of �, the right-handed stop and left-handed/right-handed stau; however, in these cases

as in all others, the coupling constants  and ⌘ are unconstrained. For each model, in

addition to the quantum numbers of �, we list its multiplicity g�, its SU(3) and SU(2)

quadratic Casimirs C3(r) and C2(r), as well as the thermal masses of the SM gauge and

Higgs bosons in the high-temperature limit. The thermal masses of the gauge bosons,

⇧
W

and ⇧
B

, include both the SM and the � loop contributions. For the Higgs, we list

only the additional contribution due to � loops; the SM contributions are discussed in

Appendix A. The thermal mass of the � itself is given by

⇧�

T 2
=

g2C2(r)

4
+

g2
s

C3(r)

4
+

g02Y 2
�

4
+



6
+

⌘

6

⇣g�

2
+ 1

⌘
, (2.15)

where g
s

, g and g0 are the SM SU(3)
c

, SU(2)
L

and U(1)
Y

gauge couplings, respectively.

2.3.1 Direct Collider Constraints on the Benchmark Models

In this paper we will mostly consider BSM scalars in a physical mass range⇠ 100 . . . 400 GeV,

some of them colored. One might naively expect that most of them are already ex-

cluded by direct Tevatron and LHC searches. In this short subsection we show that it

is not the case, and many viable scenarios are still essentially unconstrained by direct

– 9 –

[* we treat     as a free parameter, unlike SUSY]
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Figure 2. Same as Fig. 1, for the Exotic Triplet model (see Table 1).
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Figure 3. Same as Fig. 1, for the Sextet model (see Table 1).

in precision expected in future experiments will allow these models to be probed. In

both models, the minimal deviation in the hgg coupling compatible with a strongly
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Results: “Sextet”
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Figure 1. The region of parameter space where a strongly first-order EWPT occurs in the
“RH stop” benchmark model. Also shown are the fractional deviations of the hgg (left panel)
and h�� (right panel) couplings from their SM values. Solid/black lines: contours of constant
EWPT strength parameter ⇠ (see Eq. (2.9)). Dashed/orange lines: contours of constant
hgg/h�� corrections. (For the case of h�� the correction is always negative, and the plots
show its absolute value.) In the shaded region, phase transition into a color-breaking vacuum
occurs before the EWPT.

reported by the ATLAS collaboration [? ] are

R
g

= 1.08± 0.14,

R
�

= 1.23+0.16
�0.13. (4.2)

These results already have interesting implications for the possibility of a strongly first-

order EWPT. In particular, the Sextet model, where the deviations in the hgg coupling

in the region with first-order EWPT are predicted to be 70% or above, is completely

excluded.4 It is clear that models where � is in even larger representations of SU(3)
c

,

e.g. an octet, are also ruled out. The RH Stop and Exotic Triplet models, on the other

hand, are still compatible with data at 68% CL. However, a dramatic improvement

4A potential loophole that should be kept in mind is that these bounds assume no sizable BSM
contributions to the Higgs width. If such a contribution is allowed, a 70% deviation in the hgg coupling
is only excluded at a 2 sigma level, and thus the Sextet model remains marginally compatible with
data.
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ATLAS: ruled out!*

[* usual caveat: SM total width assumed]

NOTE: Our sextet can decay to 4 jets       no direct search!
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Figure 1. The region of parameter space where a strongly first-order EWPT occurs in the
“RH stop” benchmark model. Also shown are the fractional deviations of the hgg (left panel)
and h�� (right panel) couplings from their SM values. Solid/black lines: contours of constant
EWPT strength parameter ⇠ (see Eq. (2.9)). Dashed/orange lines: contours of constant
hgg/h�� corrections. (For the case of h�� the correction is always negative, and the plots
show its absolute value.) In the shaded region, phase transition into a color-breaking vacuum
occurs before the EWPT.

reported by the ATLAS collaboration [? ] are

R
g

= 1.08± 0.14,

R
�

= 1.23+0.16
�0.13. (4.2)

These results already have interesting implications for the possibility of a strongly first-

order EWPT. In particular, the Sextet model, where the deviations in the hgg coupling

in the region with first-order EWPT are predicted to be 70% or above, is completely

excluded.4 It is clear that models where � is in even larger representations of SU(3)
c

,

e.g. an octet, are also ruled out. The RH Stop and Exotic Triplet models, on the other

hand, are still compatible with data at 68% CL. However, a dramatic improvement

4A potential loophole that should be kept in mind is that these bounds assume no sizable BSM
contributions to the Higgs width. If such a contribution is allowed, a 70% deviation in the hgg coupling
is only excluded at a 2 sigma level, and thus the Sextet model remains marginally compatible with
data.
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Results: “RH Stop”

NOT ruled out if                !

MIN deviation ~17%, probed at 3-sigma at LHC-14

NOTE:  The “RH stop” can decay to 2 jets or be “stealthy/
compressed”       avoid direct searches!



•     does not need to have SM gauge interactions to drive a first-order EWPT	



• Obviously this scenario would not produce any deviation in         or	



• However, it does predict a (small) deviation in           coupling [Craig, Englert, 
McCullough, 1305.5251]	



• Consider                  , integrate it out       a dim-6 operator:	



• After Higgs gets a vev: 	



• Canonically normalized Higgs       shift in            coupling	



• Effect is small, but            coupling can be determined very precisely from 
Higgsstrahlung cross section: ~0.25% ILC, ~0.05% “TLEP” [Snowmass Higgs 
report]

Higgs and a Singlet



Results: “LH Stau”
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Figure 5. Same as Fig. 1, for the “LH stau” model (see Table 1).

electrically charged, and modifies the h�� coupling. The minimal shift in this coupling

compatible with a strongly first-order EWPT is about 4 � 5% in both models. This

is clearly too small to be constrained by the present data, but may be probed by

future experiments. The Snowmass study [? ] projects a precision of about 2% at an

upgraded ILC running at
p

s = 1 TeV, and about 1.5% at TLEP, enabling the entire

region of parameter space with a first-order EWPT to be probed at a ⇠ 3 sigma level.

Interestingly, a precise measurement of the Higgsstrahlung cross section at a future e+e�

Higgs factory could provide an even more sensitive probe in these models. The minimal

shift in this cross section compatible with a first-order EWPT is about 0.8% in the LH

Stau model, and 0.6% in the RH Stau model. The projected precision at ILC-500

(with a luminosity upgrade) is about 0.25%, while TLEP is projected to measure this

cross section with an impressive 0.05% accuracy. Such a measurement would provide

a definitive probe of the possibility of a first-order EWPT in these models.

Finally, if the BSM scalar responsible for the first-order EWPT is neither colored

nor electrically charged, electron-positron Higgs factories can still explore this scenario

by measuring the e+e� ! hZ cross section, and the Higgs cubic self-coupling. This is

illustrated in Fig. 6. The minimal fractional deviation in the hZ cross section compat-

ible with a first-order EWPT is about 0.6%, similar to the “stau” models above. This

can be probed at a ⇠ 2.5 sigma level at an upgraded ILC-500, and comprehensively

tested at TLEP. In contrast, the predicted deviations in the Higgs cubic self-coupling
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hZZ: MIN deviation 0.8%, probed at 3-sigma at ILC



Results: Singlet
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Figure 6. The region of parameter space where a strongly first-order EWPT occurs in the
Singlet benchmark model. Also shown are the fractional deviations of the e+e� ! hZ

cross section (left panel) and Higgs cubic self-coupling (right panel) from their SM val-
ues. Solid/black lines: contours of constant EWPT strength parameter ⇠ (see Eq. (2.9)).
Dashed/orange lines: contours of constant �

hZ

/�3 corrections. In the shaded region, phase
transition into a color-breaking vacuum occurs before the EWPT.

are in the 10 � 20% range, making them di�cult to test at the proposed facilities.

(The accuracy of the self-coupling measurement at an ILC-1T with luminosity upgrade

is estimated to be about 13% [? ], while at TLEP it can be measured with a preci-

sion of about 30% via its contribution to Higgsstrahlung [? ].) Thus, it appears that

the Higgsstrahlung cross section provides the most sensitive probe of this challenging

scenario.

5 Discussion

In this paper, we considered several toy models which can induce a first-order elec-

troweak phase transition in the early Universe. In all models, we found a strong cor-

relation between the strength of the phase transition and the deviations of the Higgs

couplings from the SM. This suggests that precise measurements of the Higgs couplings

have a potential to definitively determine the order of the electroweak phase transition.

Such a determination would be not only fascinating in its own right, but would also
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hZZ: MIN deviation 0.5%, probed at ~2-sigma at ILC,	


10-sigma at “TLEP”



Higgs Self-Coupling
[Noble, MP, 0711.3018]

same correlation for Higgs self-coupling: deviations of 20% or more in a broad 
range of models with first-order EWPT

Measure it at the ILC-1TeV? a 100 TeV collider?

Figure 1: SM with a single extra scalar. Models with a “bumpy” zero-temperature Higgs
potential are shown by (blue) circles, and those without the bump by (red) crosses. (Left
panel) The strength of the first-order EWPT ⇠, defined in Eq. (15), vs. Higgs cubic self-
coupling. (Right panel) Higgs cubic self-coupling vs. Higgs mass for points exhibiting a
strong first-order EWPT, ⇠ > 1. In both plots, the Higgs self-coupling is normalized to the
one-loop SM expectation for the same m

h

.

zero-temperature potential essentially guarantees that the EWPT will be of the first order,
and most of the points with strong first-order EWPT in our scan (the blue points in Fig. 1)
have this feature. The Higgs self-coupling for the pure DT potential, Eq. (17), is 66% larger
than the (tree-level) SM value2 for the same v and m

h

:

�DT
3 =

5m2
h

6v
=

5

3
�SM,tree

3 , (18)

which is roughly at the center of the range for the models with strongly first-order EWPT in
our scan. Even without the bump (red points in Fig. 1), the models with ⇠ � 1 have zero-T
potentials whose characteristic feature is a flatter maximum at h = 0 compared to the SM.
This shape is close to the DT potential, again resulting in large deviations of �3 from the
SM prediction.

The connection with the pure DT case points to a potential concern about our model:
In the DT case, the physical Higgs mass is given by m

h

= A1/2v/(4⇡), so that large values
of A are required to satisfy the experimental lower bound on m

h

. Correspondingly, in our
scans, fairly large values of ⇣2 (between 3 and 10) are required to obtain phenomenologically

2The same relation holds in any model with approximate conformal symmetry in the Higgs sector broken
by nearly marginal operators [19].
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Conclusions: EWPT
• Strongly first-order EWPT, and with it Electroweak Baryogenesis, remains a 

viable possibility in a general BSM context	



• We focused on the models where first-order EWPT is induced by loops of a 
BSM scalar, with various SM quantum numbers	



• In the case of colored scalar, LHC-14 measurement of         will be able to 
conclusively probe the full parameter space with a 1-st order EWPT	



• For non-colored scalars, e+e- Higgs factories will be necessary	



• Higgs factory may be able to conclusively probe the full parameter space with 
1-st order EWPT in all models, even if induced by a SM-singlet scalar


