Higgs J^{CP} Properties From ATLAS & CMS

Si Xie

California Institute of Technology

BSM Higgs Workshop 11/03/2014

Higgs Boson

First elementary scalar particle observed in nature

- Likely the key to understanding important outstanding questions in particle physics
- Spin & CP quantum numbers are some of the most fundamental properties to study

Spin & CP Measurements

- Spin & CP discrete quantum numbers generally tricky to "measure"
- Many possible interaction terms produce the same spin and CP quantum numbers

An example: All of these terms produce spin-2 H→ZZ→4I decays

$$\begin{split} &A(X_{J=2} \rightarrow V_1 V_2) \sim \Lambda^{-1} \left[2c_1 t_{\mu\nu} f^{*1,\mu\alpha} f^{*2,\nu\alpha} + 2c_2 t_{\mu\nu} \frac{q_\alpha q_\beta}{\Lambda^2} f^{*1,\mu\alpha} f^{*2,\nu\beta} \right. \\ &+ c_3 \frac{\tilde{q}^\beta \tilde{q}^\alpha}{\Lambda^2} t_{\beta\nu} (f^{*1,\mu\nu} f^{*2}_{\mu\alpha} + f^{*2,\mu\nu} f^{*1}_{\mu\alpha}) + c_4 \frac{\tilde{q}^\nu \tilde{q}^\mu}{\Lambda^2} t_{\mu\nu} f^{*1,\alpha\beta} f^{*(2)}_{\alpha\beta} \\ &+ m_V^2 \left(2c_5 t_{\mu\nu} \epsilon^{*\mu}_{V_1} \epsilon^{*\nu}_{V_2} + 2c_6 \frac{\tilde{q}^\mu q_\alpha}{\Lambda^2} t_{\mu\nu} \left(\epsilon^{*\nu}_{V_1} \epsilon^{*\alpha}_{V_2} - \epsilon^{*\alpha}_{V_1} \epsilon^{*\nu}_{V_2} \right) + c_7 \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} \epsilon^{*}_{V_1} \epsilon^{*}_{V_2} \right) \\ &+ c_8 \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} f^{*1,\alpha\beta} \tilde{f}^{*(2)}_{\alpha\beta} + c_9 t^{\mu\alpha} \tilde{q}_\alpha \epsilon_{\mu\nu\rho\sigma} \epsilon^{*\nu}_{V_1} \epsilon^{*\rho}_{V_2} q^\sigma \\ &+ \frac{c_{10} t^{\mu\alpha} \tilde{q}_\alpha}{\Lambda^2} \epsilon_{\mu\nu\rho\sigma} q^\rho \tilde{q}^\sigma \left(\epsilon^{*\nu}_{V_1} (q \epsilon^*_{V_2}) + \epsilon^{*\nu}_{V_2} (q \epsilon^*_{V_1}) \right) \right] , \end{split}$$

 In general, the best we can do is rule out each individual term in favor of the Standard Model term

Si Xie

Spin & CP Measurements

- Higgs spin and CP measurements are performed by using distributions of kinematic variables:
 - Interaction terms producing different spin and CP quantum numbers exhibit different distributions
 - These differences discriminate between different spin and CP hypotheses
 - The number of kinematic variables available differs depending on the Higgs decay channel

J^{CP} in H→ZZ→4I

- Has the most kinematic information available
- 8 kinematic variables:

5 angles: $\theta^*, \theta_1, \theta_2, \Phi, \Phi_1$

3 masses: m_{Z1} , m_{Z2} , m_{41}

Collectively denote as Ω

- Can also condense the information into a set of kinematic discriminants
 - Can be based on matrix element calculations (CMS) or simulation trained MVA discriminants (ATLAS)

Si Xie

J^{CP} in H—WW—IVIV

- Due to the presence of two neutrinos, cannot completely determine the decay kinematics
- Rely on a set of possibly correlated kinematic observables:
 - m_{||} & m_{||} (CMS)
 - BDT trained using input variables m_{\parallel} , $\Delta \phi_{\parallel}$, $p_{_{\top \parallel}}$, $m_{_{\top}}$ (ATLAS)

Si Xie

J^{CP} in H→γγ

- Only a single kinematic variable encodes the spin information:
 - cosθ*: cosine of scattering angle in the Collins-Soper frame

Si Xie

Spin

- Main sensitivity from H→ZZ→4l channel
- Hypothesis testing against:
 - all mixtures of spin 1 states
 - each individual spin 2 state

Vector

Pseudo-Vector

$$A(X_{J=1} \to VV) = b_1 \left[(\epsilon_1^* q) \left(\epsilon_2^* \epsilon_X \right) + (\epsilon_2^* q) \left(\epsilon_1^* \epsilon_X \right) \right] + b_2 \epsilon_{\alpha\mu\nu\beta} \epsilon_X^{\alpha} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \tilde{q}^{\beta}$$

$$\begin{split} &A(X_{J=2} \rightarrow V_{1}V_{2}) \sim \Lambda^{-1} \left[2c_{1}t_{\mu\nu}f^{*1,\mu\alpha}f^{*2,\nu\alpha} + 2c_{2}t_{\mu\nu}\frac{q_{\alpha}q_{\beta}}{\Lambda^{2}}f^{*1,\mu\alpha}f^{*2,\nu\beta} \right. \\ &\left. + c_{3}\frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}}t_{\beta\nu}(f^{*1,\mu\nu}f^{*2}_{\mu\alpha} + f^{*2,\mu\nu}f^{*1}_{\mu\alpha}) + c_{4}\frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} \right. \\ &\left. + m_{V}^{2}\left(2c_{5}t_{\mu\nu}\epsilon^{*\mu}_{V_{1}}\epsilon^{*\nu}_{V_{2}} + 2c_{6}\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}\left(\epsilon^{*\nu}_{V_{1}}\epsilon^{*\alpha}_{V_{2}} - \epsilon^{*\alpha}_{V_{1}}\epsilon^{*\nu}_{V_{2}}\right) + c_{7}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}\epsilon^{*}_{V_{1}}\epsilon^{*}_{V_{2}}\right) \right. \\ &\left. + c_{8}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}\tilde{f}^{*(2)}_{\alpha\beta} + c_{9}t^{\mu\alpha}\tilde{q}_{\alpha}\epsilon_{\mu\nu\rho\sigma}\epsilon^{*\nu}_{V_{1}}\epsilon^{*\rho}_{V_{2}}q^{\sigma} \right. \\ &\left. + \frac{c_{10}t^{\mu\alpha}\tilde{q}_{\alpha}}{\Lambda^{2}}\epsilon_{\mu\nu\rho\sigma}q^{\rho}\tilde{q}^{\sigma}\left(\epsilon^{*\nu}_{V_{1}}(q\epsilon^{*\nu}_{V_{2}}) + \epsilon^{*\nu}_{V_{2}}(q\epsilon^{*\nu}_{V_{1}})\right)\right], \end{split}$$

Si Xie

Spin-1 Results

- All spin-1 terms and mixtures excluded at about 4sigma or more
- Similar sensitivity for ATLAS and CMS, where they are comparable

Si Xie

Spin-2 Results

 Combination of HWW and HZZ yields a slight improvement in sensitivity

ATLAS

 $H \rightarrow \gamma \gamma$

- ATLAS tests minimum coupling spin-2 term for various mixtures of production mechanism
- Similar sensitivity for CMS and ATLAS
- about 4σ or more, with a few exceptions that are excluded at about 30

Most spin-2 terms and mixtures excluded at

√s = 8 TeV [Ldt = 20.7 fb CL_c expected $H \rightarrow ZZ^* \rightarrow 4I$ assuming JP = 0+ √s = 7 TeV (Ldt = 4.6 fb-1 ±1σ √s = 8 TeV (Ldt = 20.7 fb-1 $H \rightarrow WW^* \rightarrow ev\mu v/\mu vev$ $\sqrt{s} = 8 \text{ TeV } \text{ Ldt} = 20.7 \text{ fb}^{-1}$ $CL_{s}(J^{p}=2^{+})$ 10 10⁻⁵ 75 25 50 100 $f_{q\bar{q}}$ (%)

Data

Si Xie

CP

- Pure pseudo-scalar tested against SM Higgs
- Pseudoscalar excluded at 99.9% (CMS) and 98% (ATLAS)

Si Xie

Spin & CP Summary

- (1) Absent complicated conspiracies, we are very sure that the Higgs boson is spin-0
- (2) A pure pseudo-scalar is ruled out

11/03/2014

Si Xie

Anomalous Couplings

- There remains the possibility that Higgs is some mixture of scalar and pseudoscalar
- To resolve this question, need to move from hypothesis testing to parameter estimation

$$A(X_{J=0} \to V_{1}V_{2}) = v^{-1} \left(\left[a_{1} - e^{i\phi_{\Lambda_{1}}} \frac{q_{Z_{1}}^{2} + q_{Z_{2}}^{2}}{(\Lambda_{1})^{2}} \right] m_{Z}^{2} \epsilon_{Z_{1}}^{*} \epsilon_{Z_{2}}^{*} \right) + a_{2} f_{\mu\nu}^{*(Z)} f^{*(Z),\mu\nu} + a_{3} f_{\mu\nu}^{*(Z)} \tilde{f}^{*(Z),\mu\nu} + a_{3}^{Z\gamma} f_{\mu\nu}^{*(Z)} \tilde{f}^{*(Z),\mu\nu} + a_{3}^{Z\gamma} f_{\mu\nu}^{*(Z)} \tilde{f}^{*(\gamma),\mu\nu} + a_{3}^{Z\gamma} f_{\mu\nu}^{*(\gamma)} \tilde{f}^{*(\gamma),\mu\nu} + a_{3}^{\gamma\gamma} f_{\mu\nu}^{*(\gamma)} \tilde{f}^{*(\gamma),\mu\nu} + a_{3}^{\gamma\gamma} f_{\mu\nu}^{*(\gamma)} \tilde{f}^{*(\gamma),\mu\nu} \right),$$

Si Xie

Anomalous Couplings

- There remains the possibility that Higgs is some mixture of scalar and pseudoscalar
- To resolve this question, need to move from hypothesis testing to parameter estimation

Anomalous Couplings

In the Standard Model:

(ZZ couplings)

- a1 = 2
- a2 is $O(10^{-3} 10^{-2})$
- a3 is effectively 0

(Z couplings)

•
$$a_2^Z = 0.0035$$
 • $a_2^Z = -0.004$

•
$$a_3^Z = 0$$

couplings)

•
$$a_2 = -0.004$$

•
$$a_3 = 0$$

SM HZZ decay (a1)

Leading momentum dependent correction

Si Xie

Maximum Likelihood Fits

 Build probability density functions for these 8 variables as functions of the model parameters :

$$P(\Omega | \zeta)$$
,

$$\zeta = (a_2^{ZZ}, a_3^{ZZ}, a_2^{ZY}, ...)$$

• Then fit to the data (maximize likelihood) to extract & constrain coupling coefficients ζ

Si Xie

Constructing the PDF

- Two ways to make the PDF:
- (1) Write down the analytic expression for the differential cross section in terms of coupling coefficients and convolute with transfer functions: Multidimensional Fit

Transfer functions:

maps generator-level observables to detector-level observables

...but extremely computationally challenging

Si Xie

Constructing the PDF

Two ways to make the PDF:

(2) condense the information from 8 observables to two (or three) Matrix-Element based kinematic discriminants : KD-method

...but less flexibility in size of model parameter space that can be simultaneously constrained

Si Xie

Maximum Likelihood Fit

- In practice with only ~25 data events, difficult to constrain the full parameter space
- Restrict the model space to include 2 anomalous couplings at a time (eg. a₂^{zz} & a₃^{zz})
 - Interpret in context of small deviations from SM

Si Xie

Anomalous Coupling Results on (a₂zz,a₃zz)

More accurately, we constrain a_2^{ZZ}/a_1^{ZZ} & a_3^{ZZ}/a_1^{ZZ} , as a_1^{ZZ} is essentially profiled in the fit

No significant deviations from SM

- Two approaches yield very similar constraints
- Potential deviation away from 0 in a₂ and a₃ can produce significant CP violation

Si Xie

Anomalous Coupling Results

A full set of constraints on all coupling coefficients mentioned

- Including constraints with complex phases of coupling coefficients profiled
- And one other parameter (and its complex phase) profiled
- No significant deviations from the SM...

Si Xie

Anomalous Coupling Results

A full set of constraints on all coupling coefficients mentioned

- Including constraints with complex phases of coupling coefficients profiled
- And one other parameter (and its complex phase) profiled
- No significant deviations from the SM...

Si Xie

Anomalous Coupling Results: Zγ and γγ couplings

- No deviations from SM
- Currently, sensitivity is limited...

...but in the future, potentially very interesting because signs of new physics may show up in these couplings before the ZZ couplings

Si Xie

 $f_{a3}^{\gamma\gamma}\cos(\phi^{\gamma\gamma})$

Summary

- Higgs boson is very likely spin-0
- Higgs boson is not a pure pseudoscalar
- No evidence of anomalous couplings at same order of magnitude as the SM HZZ term
- All J^{CP} properties so far consistent with SM Higgs
- More stringent tests ahead with increased dataset

Backup

Spin-2 Results Hgg

£_	$1 - CL_s$	
$f_{ m qar{q}}$	expected	observed
0	0.92	0.94
0.25	0.78	0.83
0.50	0.64	0.71
0.75	0.69	0.75
1	0.83	0.85

Si Xie

Anomalous Coupling Results on (a₂zz,a₃zz)

Constraints, assuming no deviation in other couplings

 Constraints can be mapped to parameter space of specific Beyond-SM models guide for model building

Si Xie