
Interference effects and the Higgs Width

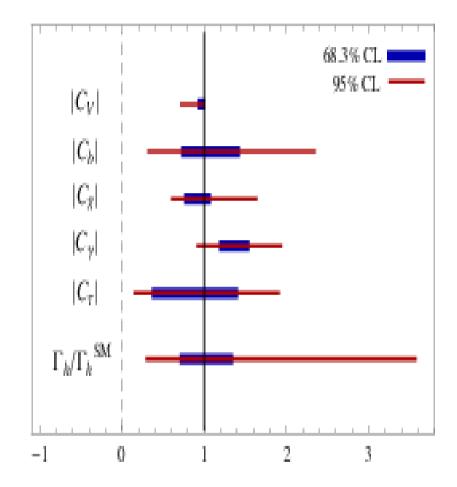
Raoul Röntsch **‡ Fermilab**

BSM Higgs Workshop @ LPC Fermilab, November 3 2014

Introduction

- Higgs width unambiguously predicted in SM: $\ \Gamma_{H}^{
 m SM} = 4.07 imes 10^{-3} \ {
 m GeV}$
- Larger width suggestive of decays to new states.
- Involved in extraction of Higgs couplings.
- BUT: detector resolution @ LHC ~ 1 GeV direct measurement (e.g. scanning cross-section about mH) not possible.
 - (One motivation for future linear collider).
- Use indirect means to bound width @ LHC.
 - Global fits
 - "Inferometry"
 - Mass peak shifts in $H \rightarrow yy$

Higgs Width from Coupling Fits


- Theoretically wellmotivated assumption: $|C_{z,w}| < 1.5$
- Higgs coupling fits to WW, ZZ, γγ, bb, gg, ττ

 \rightarrow Upper bound on Higgs width

 $\Gamma_H / \Gamma_H^{\rm SM} \le 0.52^{+0.82}_{-0.10}$

(Dobrescu, Lykken, hep-ph/1210.3342)

(see also Djouadi, Moreau, hepph/1303.6591, CMS PAS-HIG-13-005)

Higgs Width from Coupling Fits

• Lower limit on coupling extracted from rate required for observation.

 $\Gamma_H / \Gamma_H^{\rm SM} \ge 1.05^{+1.26}_{-0.34}$

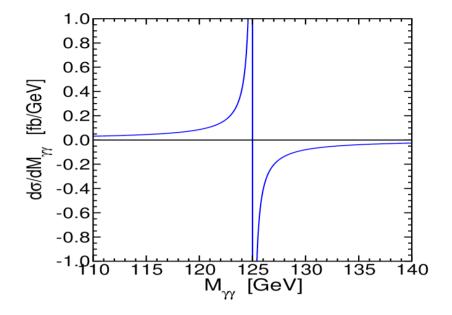
- Combining these limits: $0.71 \le \Gamma_H / \Gamma_H^{SM} \le 1.34$
- Model dependence/theoretical assumptions...

Higgs Mass Peak Shift in $H \rightarrow \gamma\gamma$

 Real part of interference between gg → γγ and gg → H → γγ is odd about Higgs peak.

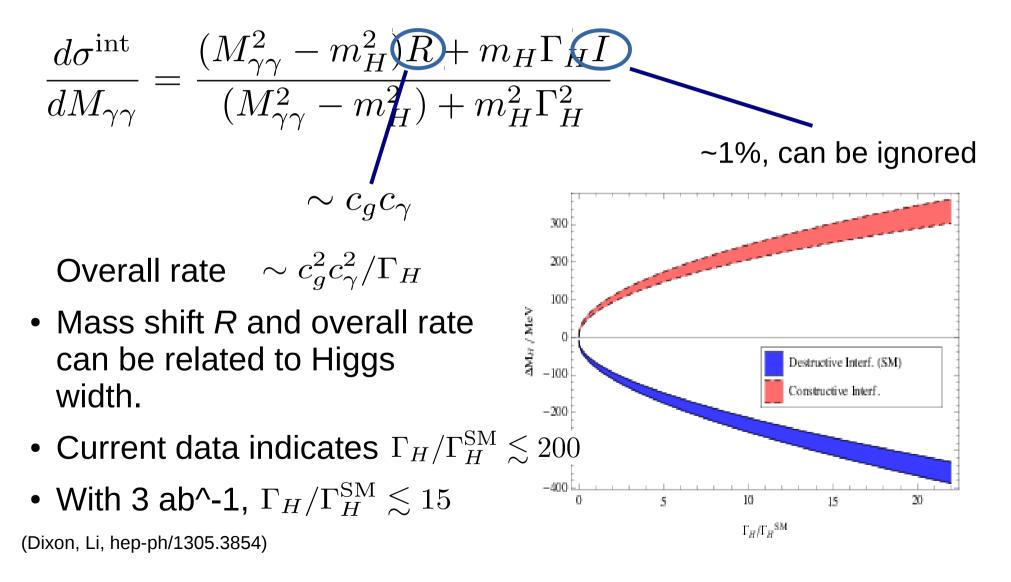
(Dircus, Willenbrock, PRD37,1801)

 Interference effects in overall cross section is small (mostly come from imaginary part of two-loop gg → γγ)


(Dixon, Siu, hep-ph/0302233)

 Shift mass peak to lower values by ~ 100 MeV – important for precise mass determinations!

(Martin, hep-ph/1208.1533, hep-ph/1303.3342,


De Florian et al., hep-ph/1303.1397,

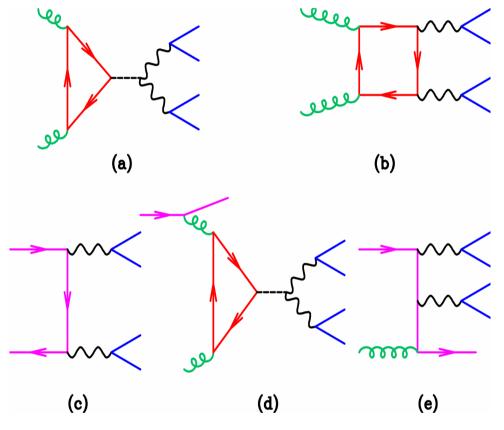
Dixon, Li, hep-ph/1305.3854)

- Strongly dependent on higher-order corrections
 - Shift decreased by including qg tree-level interference
 - Shift decreased by including NLO gg interference
 - Shift increased by including NLO qg interference
- Also strongly dependent on detector (+ other experimental) effects

Bounding Higgs Width with Mass Peak Shift

Interference in $gg \rightarrow H \rightarrow ZZ$

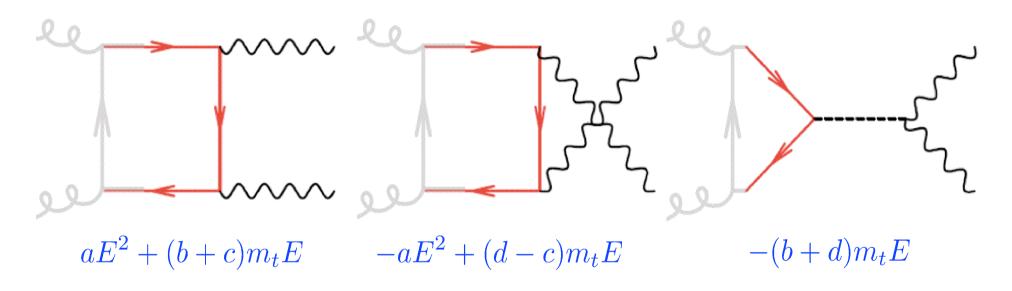
- $\Gamma_H/m_H \sim 10^{-5}$ expect **NWA** to work well for Higgs.
- In $H \rightarrow ZZ \rightarrow 4I$, ~10% of rate is in the high mass tail.


(Kauer, Passarino hep-ph/1206.4803)

- **DRAMATIC** failure of NWA **unitarizing feature** of Higgs.
- Can study off-shell behavior of the Higgs.
- Use this to bound the Higgs width (under certain assumptions):
 - On-peak: $\sigma \propto g_i^2 g_f^2 / \Gamma_H$
 - Off-peak: $\sigma \propto g_i^2 g_f^2$

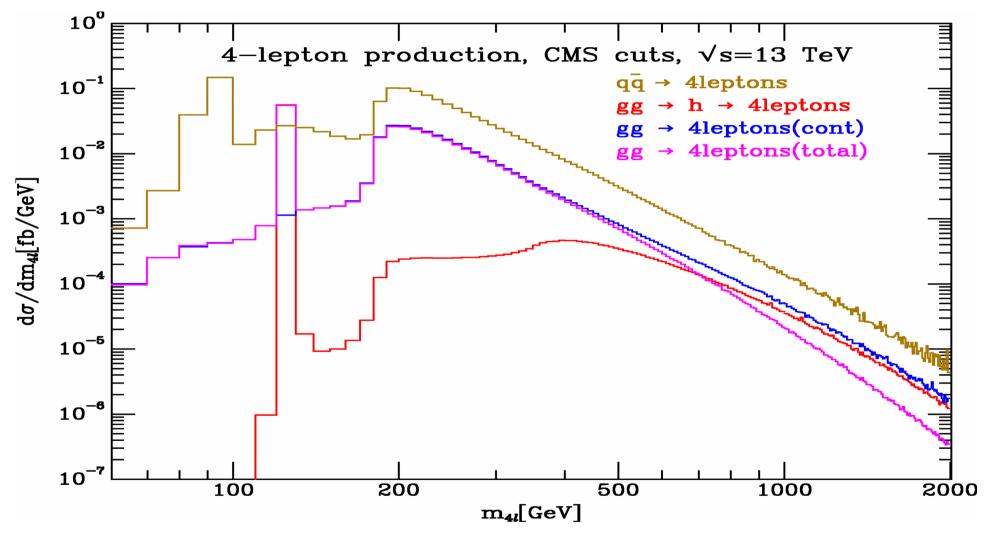
(Caola, Melnikov hep-ph/1307.4935; Campbell, Ellis, Williams hep-ph/1311.3589, hep-ph/1312.1628)

• I will focus on GLUON FUSION and H \rightarrow ZZ DECAYS.


Theoretical ingredients

- |(a)|^2 "signal"
- |(c)|^2 "background (LO)"
- |(b)|^2 "background (NNLO)"
- (a)*(b) interference large and destructive in highmass tail (needed to unitarize high-energy behavior).
- (d)*(e) interference at same order (gs^4) – expected to be less important

Understanding high energy behavior


Look at *ttb* \rightarrow *ZZ*

Courtesy J. Campbell

- Higgs amplitude cancels high energy behavior and preserves unitarity.
- Higgs high mass behavior gives insight into its unitarizing properties

Results

Interference has a significant effect!

Constraining the Higgs width

- Consider rescaling couplings and widths: $g_i \to \alpha g_i; \Gamma_H \to \alpha^4 \Gamma_H$
 - On-shell cross section remains unchanged

$$\sigma_{\rm off} = \sigma_H \frac{\Gamma_H}{\Gamma_H^{\rm SM}} - \sigma_I \sqrt{\frac{\Gamma_H}{\Gamma_H^{\rm SM}}}$$

• Cut-and-count

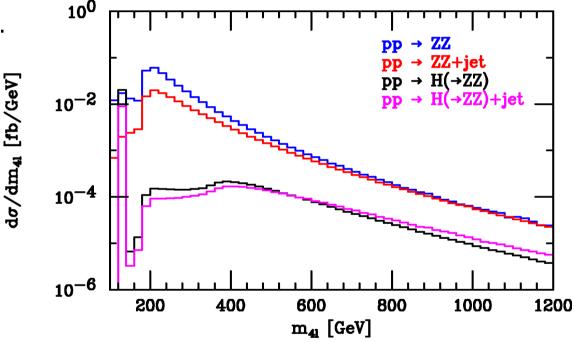
(Caola, Melnikov hep-ph/1307.4935;

Campbell, Ellis, Williams hep-ph/1311.3589, hep-ph/1312.1628)

Matrix element methods

(Campbell, Ellis, Williams hep-ph/1311.3589)

- ATLAS $\Gamma_{H} \le (4.8 7.7) \Gamma_{H}^{\rm SM}$ atlas-conf-2014-042
- CMS $\Gamma_H \leq 5.4 \ \Gamma_H^{\rm SM}$

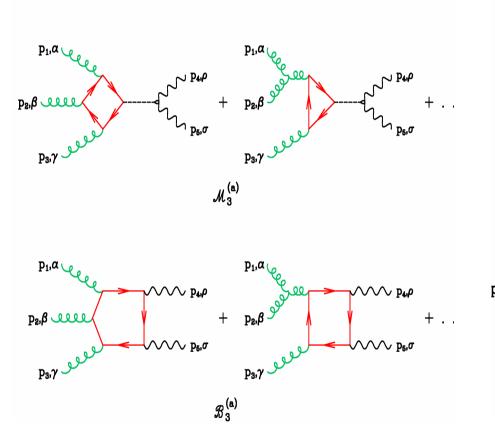

hep-ex/1405.3455

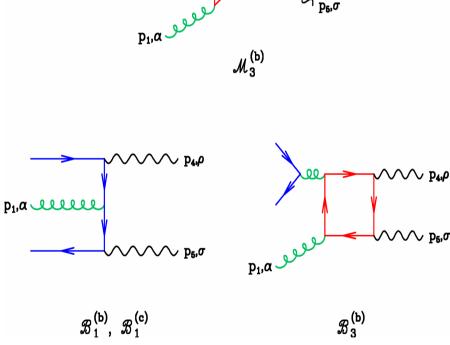
 $\Gamma_H \leq 25.2 \ \Gamma_H^{\rm SM}$

 $\Gamma_H \leq 15.7 \ \Gamma_H^{\rm SM}$

ZZ+jet (Campbell, Ellis, Furlan, RR, hep-ph/1409.1897)

- 1-jet bin is well-populated (large radiation off gg initial state).
- Same effect should be present (and hence similar analysis should be possible) in this bin.
- Background smaller in 1-jet bin.


• Additionally: these amplitudes are needed for real radiation corrections to $gg \rightarrow H \rightarrow ZZ$ and $gg \rightarrow ZZ$.


[bottleneck: virtual corrections for $gg \rightarrow ZZ$ (two-loop)]

Theoretical ingredients

Gluon-initiated

Quark-initiated.

J P4,ρ

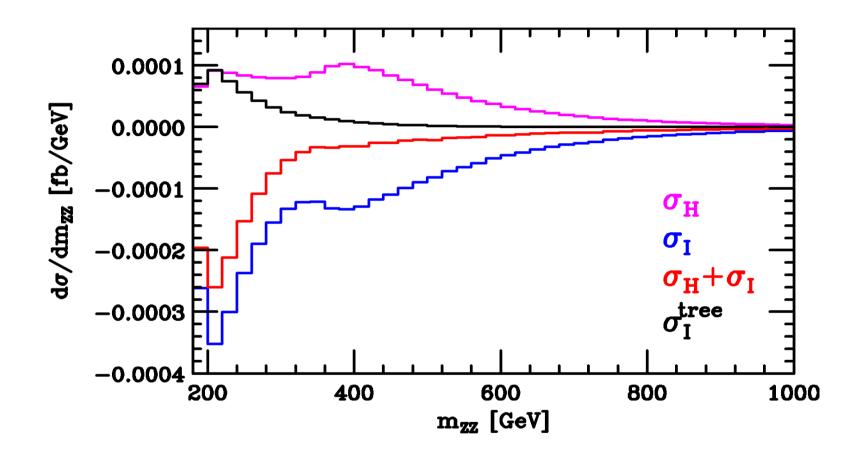
- Dominant contribution
- Cf. Campanario, *et al,* hep-ph/1211.5429

- Box*Triangle not negligible in tail
- Other interferences small (Binoth *et. al.,* hep-ph/0911.3181)

Results in partonic channels

• Z kept on-shell: decays included through BR only.

(only valid for mZZ > 2 mZ)


- Look at tail mZZ > 300 GeV
- Require jet with $|\eta| < 3$ and pT > pT,cut
- Dynamic scale $\mu = mZZ/2$
- Quark-initiated contributions amount to 25-50% at 8 TeV, smaller at 13 TeV.
- "Loop" interference contributions are large and negative (req'd by unitarity).
- "Tree" interference are small.

Results

	$p_{T,\mathrm{cut}}$ [GeV]	$\sigma_{H,\text{peak}}$ [fb]	$\sigma_{H,\text{tail}}$ [fb]	$\sigma_{I,\text{tail}}$ [fb]	$\sigma_{I,\mathrm{tail}}^{tree}$ [fb]
$\sqrt{s} = 8 \text{ TeV}$	30	0.351	0.0280	-0.0392	0.0023
	50	0.206	0.0176	-0.0244	0.0018
	100	0.0714	0.0075	-0.0100	0.0010
	200	0.0128	0.0019	-0.0024	0.00026
$\sqrt{s} = 13 { m TeV}$	30	0.909	0.110	-0.156	0.0065
	50	0.557	0.0718	-0.100	0.0053
	100	0.212	0.0329	-0.0448	0.0030
	200	0.045	0.0099	-0.0130	0.0009

- Higgs off-peak ~ order of magnitude smaller than on-peak crosssection.
- Increase by factor 4-5 for run II.
- Tree interference upper bound on this effect.

Results

• Interference has dramatic effect on shape as well as normalization.

$$\begin{array}{l} \mbox{Higgs width analysis in ZZ+jet} \\ \bullet \mbox{Recall} \quad \sigma_{\rm off} = \sigma_H \frac{\Gamma_H}{\Gamma_H^{\rm SM}} - \sigma_I \sqrt{\frac{\Gamma_H}{\Gamma_H^{\rm SM}}} \\ \bullet \mbox{For gg} \rightarrow \mbox{ZZ} \rightarrow \mbox{4l}: \quad \sigma_{\rm off} = 0.025 \frac{\Gamma_H}{\Gamma_H^{\rm SM}} - 0.036 \sqrt{\frac{\Gamma_H}{\Gamma_H^{\rm SM}}} \end{array}$$

• For gg
$$\rightarrow$$
 ZZ: $\sigma_{\text{off}} = 0.0323 \frac{\Gamma_H}{\Gamma_H^{\text{SM}}} - 0.0468 \sqrt{\frac{\Gamma_H}{\Gamma_H^{\text{SM}}}}$

• For ZZ + jet:
$$\sigma_{\text{off}} = 0.0280 \frac{\Gamma_H}{\Gamma_H^{\text{SM}}} - 0.0392 \sqrt{\frac{\Gamma_H}{\Gamma_H^{\text{SM}}}}$$

Γ

• Expect comparable width constraints in 1-jet bin

Theoretical control

- Background process pp → ZZ well controlled known to NNLO (Cascioli *et. al.* hep-ph/1405.2219)
- "Signal" and "interference" processes $gg \rightarrow H \rightarrow ZZ$ and $gg \rightarrow ZZ$ in these analyses **LO only.**
 - $gg \rightarrow H$ has large scale uncertainty & k-factor
 - Full dependence on mt required.
 - $gg \rightarrow H$ known to NLO (i.e. two loops)
 - $gg \rightarrow ZZ$ (with internal masses) at LO only.
 - Amplitudes for real radiation known (ZZ+jet)
 - Bottleneck: gg \rightarrow ZZ (with internal masses) at two loops

Theoretical control

- $gg \rightarrow ZZ$ contributes to interference terms.
- **Recall** $\sigma_{\text{off}} = \sigma_H \frac{\Gamma_H}{\Gamma_H^{\text{SM}}} \sigma_I \sqrt{\frac{\Gamma_H}{\Gamma_H^{\text{SM}}}}$
- Interference terms negligible for widths far from SM but ATLAS & CMS already close to SM width.
- Rescaling assumes that higher order corrections same in interference as in Higgs squared.
- Confirmed in the case of heavy Higgs using SCET (Bonvini *et. al.* hep-ph/1304.3053)
 - but for lighter Higgs?

Model independence

- Critical assumption: Higgs couplings on-shell same as those off-shell.
- New particles in loop may violate this (see Englert, Spannowsky, hep-ph/1409.8074, Englert, Soreq, Spannowsky hep-ph/1410.5440)
- For BSM scenarios satisfying

$$R_{m_{ZZ}} = \kappa_{ggH}(m_H^2) / \kappa_{ggH}(m_{ZZ}) \simeq 1$$

the interpretation as a width constraint is **valid**.

- Examples: Dimension-6 extension of Higgs sector with Higgs portal, minimal extension of Higgs sector.
- Not valid for, e.g. MSSM
 - But here, off-shell effects excellent probe for light stops

Conclusions

- Indirect measurements of Higgs width possible at the LHC.
 - Global fits, mass peak shift in *yy* decay, off-peak effects in *ZZ* decay
- Off-peak effects in *ZZ* decay:
 - Possible because of unitarizing feature of Higgs
 - Inclusion of interference effects is essential
 - Analysis also possible in 1-jet bin (also VBF?)
 - Work ongoing to extend analysis to NLO
- All indirect measurements have theoretical assumptions careful interpretation of width constraints.
 - Understand validity of interpretation within various BSM scenarios.

THANK YOU