
Searches for Invisible Higgs Boson Decays

Darien Wood

For the ATLAS and CMS Collaborations

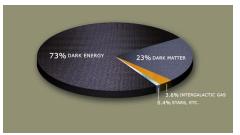
LPC – BSM Higgs Workshop, 2014

- Motivation and strategy
- Search via Vector Boston Fusion production
- Search with associated Z production
 - $\ Z \to \ell \ell$
 - $\ Z \to b \overline{b}$

• Limits

- Production X
 branching fraction
- SM ratio and invisible branching fraction
- Dark Matter interpretations
- Conclusions

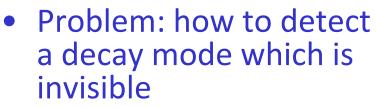
Invisible Decays of the Higgs Boson

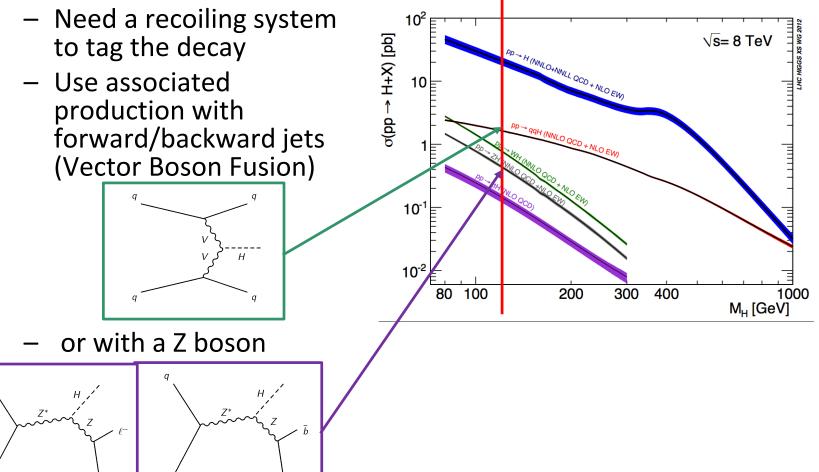

 In MSM, invisible decays of the Higgs boson are extremely rare:

 $B(H \rightarrow Z^* Z \rightarrow v \overline{v} v \overline{v}) \approx 0.1\%$

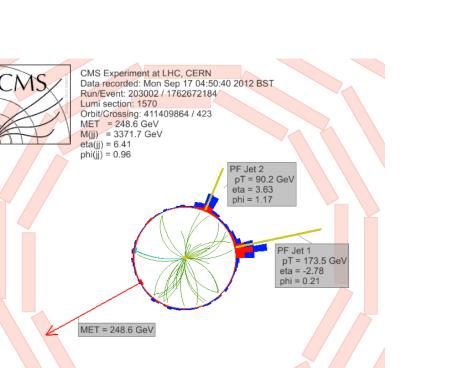
- Observation of substantial invisible decay rate would be definite sign of BSM physics. Long list of interesting invisible things that a Higgs might decay into:
 - LSPs of SUSY
 - Neutralinos, gravitinos
 - Graviscalars (large extra dimensions)
 - Dark matter

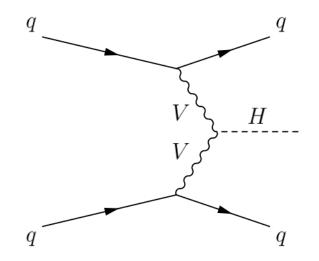
- ...


- Coupling to Dark matter
 - Higgs sector allows direct coupling to hidden sector that is renormalizable
 - Higgs portal



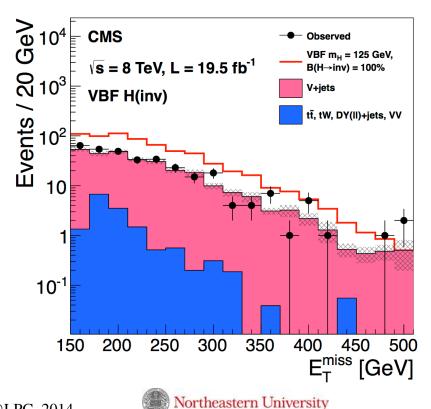
- Two approaches:
 - 125 GeV Higgs has been discovered – see how often it decays invisibly
 - Other Higgs states might have substantial invisible branching fractions, and thus escaped detection so far – scan Higgs mass hypothesis looking for invisible states



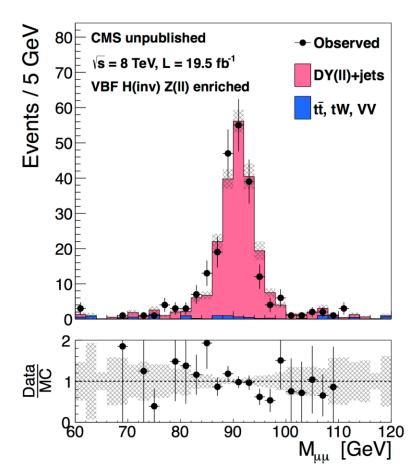


Vector Boson Fusion

- Signature:
 - Two jets at large positive and negative rapidities
 - Missing transverse energy



- 2 jets:
 - p_T(j)> 50 GeV
 - Opposite rapidity
 - ∆η(jj) > 4.2
 - M(jj) > 1100 GeV
 - Δφ(jj) < 1.0</p>
- Missing E_T > 130 GeV
- Vetos:
 - Any leptons (reduce $W \rightarrow \ell \nu + jets$)
 - Central jets with p_T>
 30 GeV (reduce QCD multiljets)

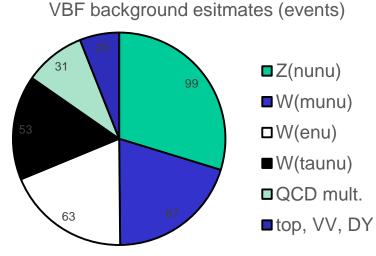


VBF background estimation

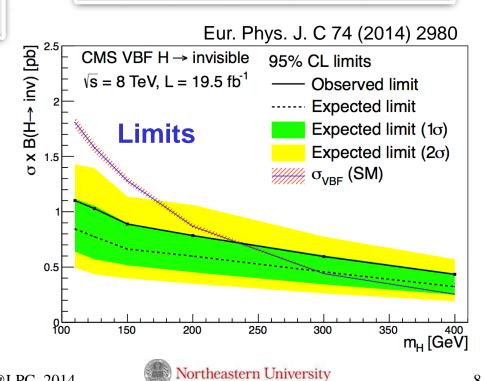
 $M(\mu\mu)$ in control region with relaxed selection (no CJV, no $\Delta\eta$) Main background

 $(Z \rightarrow \nu \nu)$ +jets estimated by measuring $Z \rightarrow \mu \mu$ and extrapolating with MC

- Signal selection (without including muon in missing ET)
- Two muons $60 < m(\mu\mu) < 120 \text{ GeV}$
- $(W \rightarrow \ell \nu)$ +jets estimated by requiring one e/µ/ τ , and extrapolating from MC
- QCD multijet estimated by comparing regions in missing ET w/ and w/o central jet veto



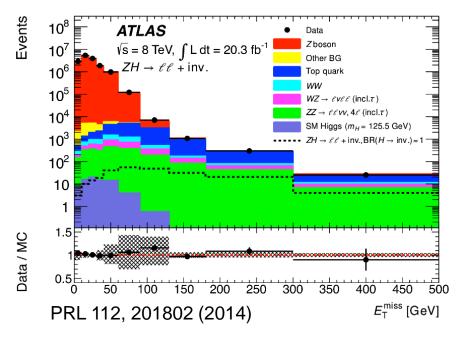
VBF results

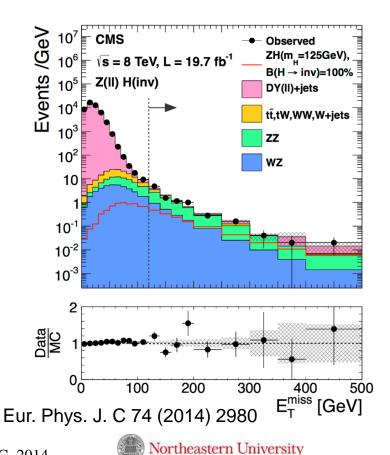

• Yields

Process	Event yields
$Z(\nu\nu)$ +jets	$99 \pm 29 (\text{stat.}) \pm 25 (\text{syst.})$
$W(\mu\nu)$ +jets	$67 \pm 5 (\mathrm{stat.}) \pm 16 (\mathrm{syst.})$
$W(e\nu)$ +jets	$63 \pm 9 ({\rm stat.}) \pm 18 ({\rm syst.})$
${ m W}(au_{ m h} u)+{ m jets}$	$53 \pm 18 (\text{stat.}) \pm 18 (\text{syst.})$
QCD multijet	$31 \pm 2 (\mathrm{stat.}) \pm 23 (\mathrm{syst.})$
Sum $(t\bar{t}, single top quark, VV, DY)$	$20.0 \pm 8.2 (\mathrm{syst.})$
Total background	$332 \pm 36 (\text{stat.}) \pm 46 (\text{syst.})$
VBF H(inv.)	$210\pm30~\mathrm{(syst.)}$
ggF H(inv.)	$14 \pm 11 (\mathrm{syst.})$
Observed data	390
S/B (%)	70

Uncertainties

Source	Total background	Signal
Control region statistics	11%	
MC statistics	11%	4%
$\text{Jet}/E_{\text{T}}^{\text{miss}}$ energy scale/resolution	7%	13%
QCD background estimation	4%	
Lepton efficiency	2%	
Tau ID efficiency	1%	
Luminosity	0.2%	2.6%
Cross sections	0.5 - 1%	
PDFs		5%
Factorization/renormalization scale		4%
Gluon fusion signal modelling		4%

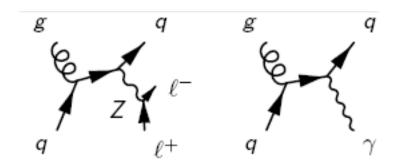



Z(&)H(inv) - preselection

- Signature studied by both ATLAS and CMS
- Common preselections:
 - Pair of electrons or muons with opposite charge
 - Mass consistent with the Z boson mass

- Dominant background before Missing ET selection:
 - Drell-Yan Z→ℓℓ (+jets)

9

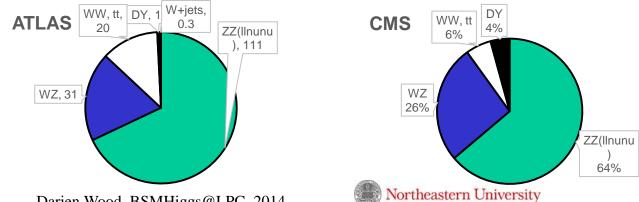


- DY (+jets) background: dominated by fake missing E_T – hard to estimate from MC
 - ATLAS extrapolate from sideband regions in $|E_T^{miss} - p_T(\ell \ell)|/p_T(\ell \ell)$ and $\Delta \phi(E_T^{miss}, p_T^{miss})$
 - CMS use γ + *jets* data to model MET in Z + *jets*

p_T

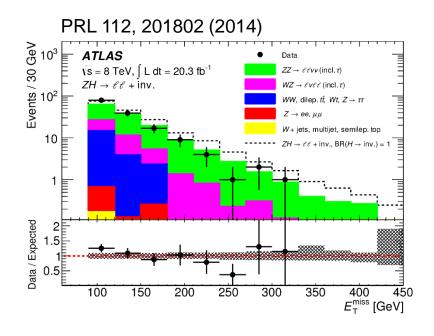
 Photon pT spectrum reweighted to match Z

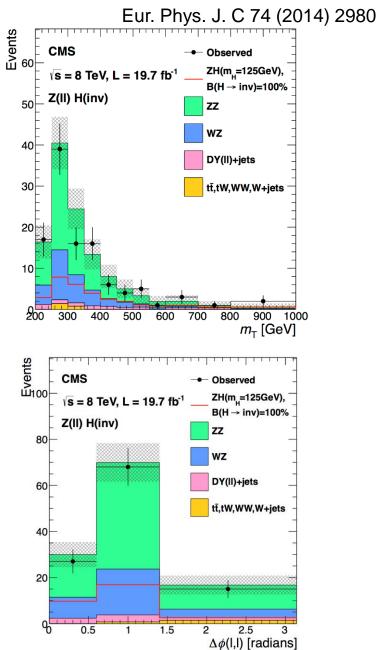
- Backgrounds without resonant $Z \rightarrow ee, \mu\mu$ are estimated from $e\mu$ events in data
 - $WW, t\bar{t}, Wt, Z \rightarrow \tau\tau$
- ZZ, WZ estimated from MC



$Z(\ell \ell)H(inv.)$: final selections and yields

Selection	ATLAS	CMS
MET	>90 GeV	>120 GeV
$\Delta \phi(\ell \ell, MET)$	>2.6	>2.7
$\left E_T^{miss} - p_T(\ell\ell)\right / p_T(\ell\ell)$	<0.20	<0.25
Jet veto	<1 jets, p _T >25 GeV	<2 jets, p _T >30 GeV, veto b- jets > 20 GeV
	$\Delta \phi(E_T^{miss}, p_T^{miss})$ >0.2, $\Delta \phi(\ell \ell) < 1.7$	
Yields (events)		
Backgrounds	163	138
Signal (100% B(inv))	53	35
Observed	180	134


06-Nov-2014


Darien Wood, BSMHiggs@LPC, 2014

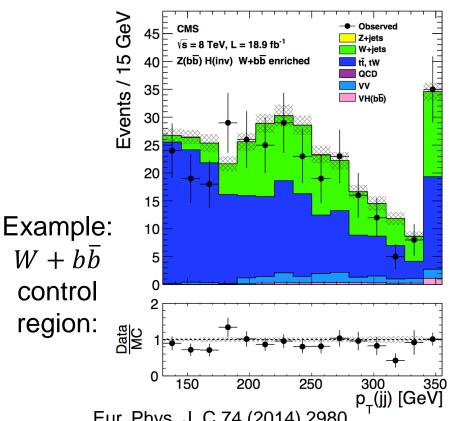
11

- ATLAS
 - 1-D: Missing ET
- CMS
 - 8 TeV: 2-D: transverse mass vs. Δφ(ℓℓ)
 - 7 TeV: 1-D transverse mass

- Analysis closely based on CMS search for $Z(\nu\nu)H(b\overline{b})$
- Select a pair of jets consistent with a $Z(b\overline{b})$ hypothesis
 - p_T , invariant mass
 - b-tagging base on CSV
- Veto leptons to suppress ttbar and WZ

 Missing ET cuts to suppress QCD multijet background

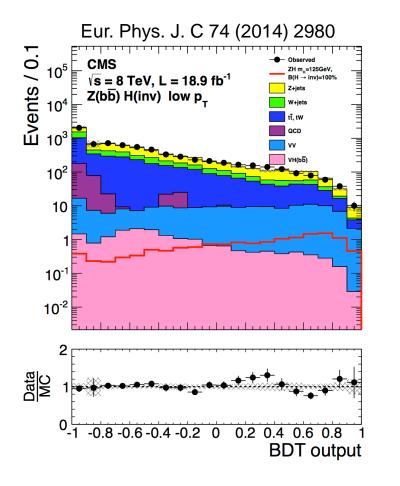
Variable	Selection		
	Low $p_{\rm T}$	Intermediate $p_{\rm T}$	$\mathrm{High}\;p_{\mathrm{T}}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	100-130 GeV	130-170 GeV	> 170 GeV
$p_{\mathrm{T}}^{\mathrm{j1}}$	>60 GeV	>60 GeV	>60 GeV
$p_{\mathrm{T}}^{j1} \ p_{\mathrm{T}}^{j2} \ p_{\mathrm{T}}^{j2}$	>30 GeV	>30 GeV	>30 GeV
$p_{\mathrm{T}}^{\mathrm{jj}}$	>100 GeV	>130 GeV	> 130 GeV
$M_{ m jj}$	$<\!250\mathrm{GeV}$	$<\!250\mathrm{GeV}$	$<\!250\mathrm{GeV}$
CSV _{max}	>0.679	>0.679	>0.679
CSV_{min}	>0.244	>0.244	>0.244
N additional jets	<2	—	—
N leptons	=0	=0	=0
$\Delta \phi(\mathrm{Z},\mathrm{H})$	>2.0 radians	>2.0 radians	>2.0 radians
$\Delta \phi(E_{ m T}^{ m miss},{ m j})$	>0.7 radians	>0.7 radians	>0.5 radians
$\Delta \phi(E_{ m T}^{ m miss}, E_{ m T}^{ m miss}{}_{ m trk})$	<0.5 radians	<0.5 radians	<0.5 radians
$E_{\rm T}^{\rm miss}$ significance	>3	not used	not used



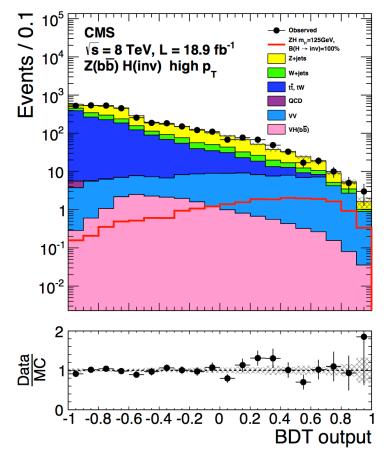
- **Background normalized** in seven backgroundenriched control regions:
 - Z+jets (0,1,2 b-jets)
 - W+jets (0,1,2 b-jets)
 - $t\overline{t}$
- Finally, Boosted Decision Tree (BDT) is used to distinguish signal from background

Eur. Phys. J. C 74 (2014) 2980

evnets	Low p _T	Intermediate p _T	High p _T
Background	40±4	65±4	181±10
Signal (B(inv.)=100%)	1.6±0.1	3.6±0.3	12.6±1.1
Observed	38	61	204



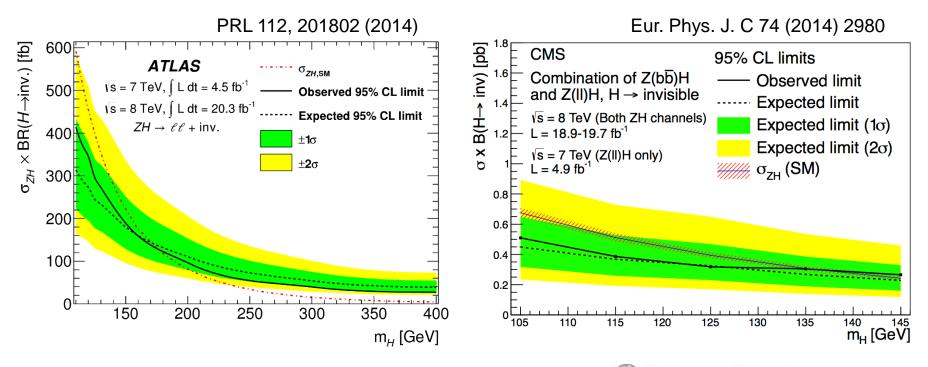
$Z(b\overline{b})H(inv.)$ - results


No excess observed

- Set limits

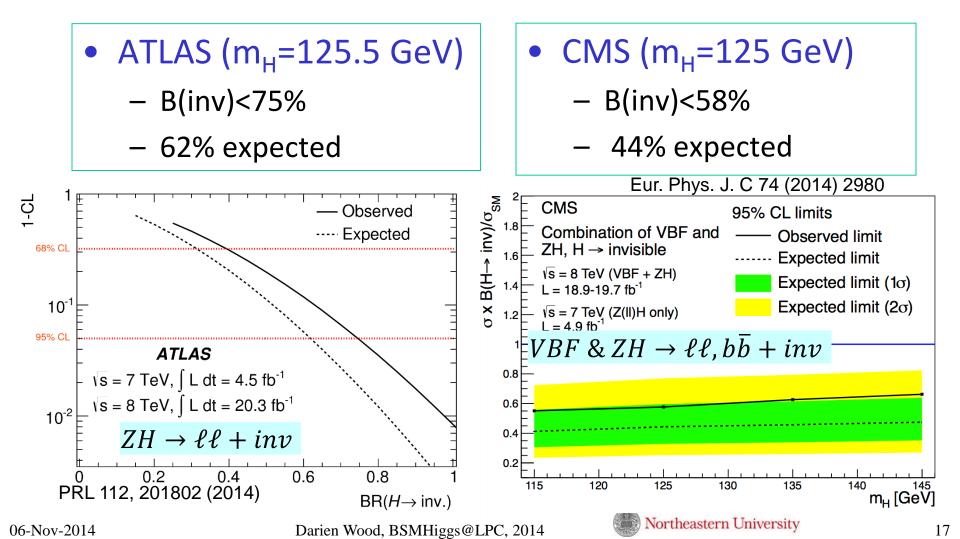
 Limit at 1.8 SM cross section (for 100% B(inv) at m=125 GeV)

Expected 2.0xSM



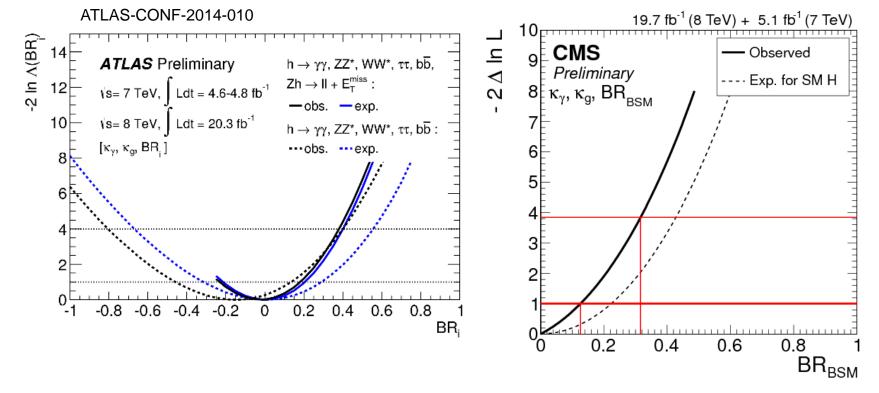
- Limits on ZH production times B(inv.)
 - Applicable to non-SM Higgs searches with some caveats

 $ZH \to \ell\ell + inv$


 $ZH \rightarrow \ell \ell, b\overline{b} + inv$

 Normalized Limits can be interpreted as limits on B(inv) assuming production is same as in SM

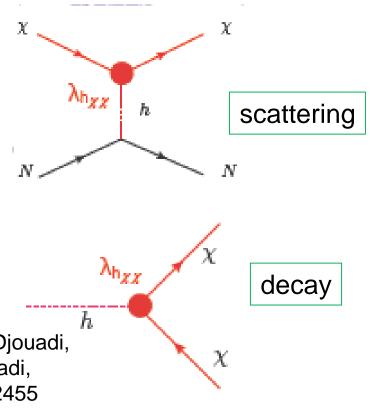
(see talks from N. Wardle and K. Schmieden on Monday)


ATLAS direct+indirect

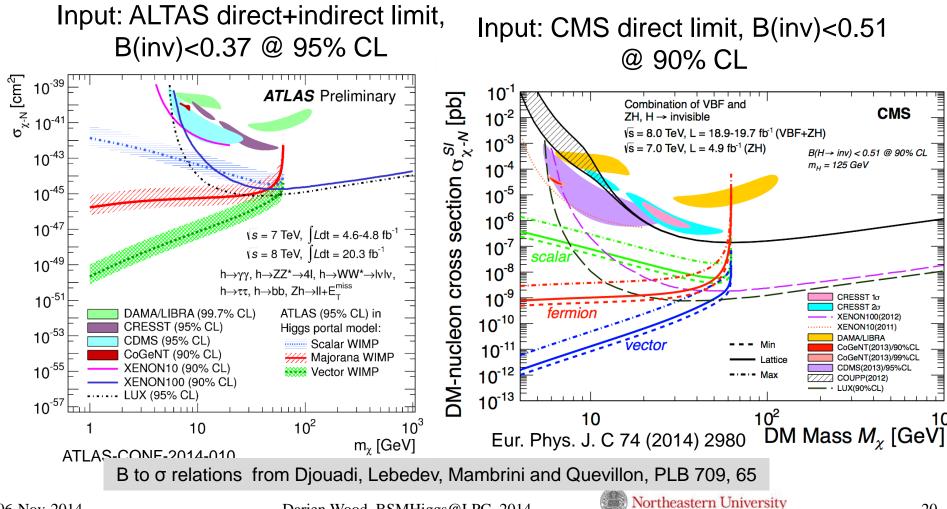
Observed (expected) 95% CL limit: 37% (39%)

CMS indirect

Observed 95% CL limit: 32% (42%)



- If DM couples to the Higgs, then this provides a natural source of invisible decays
- In the context of the Higgs Portal DM models, constraints on B(inv) can give constraints on DMnucleon cross sections
- Higgs portal: Patt & Wilczek, arxiv:hep-ph.0605.188; Djouadi, Lebedev, Mambrini, Quevillon, PLB 790, 65; Djouadi, Falkoski, Mambrini, Quevillon, Eur. Phys. J. C73, 2455


Applicable when the mass of the DM particle, χ, is less than half of the Higgs mass

- Upper limits on spin-independent DM-nucleon cross sections
- More sensitivity than direct DM detection experiments in lowmass region in context of Higgs portal DM model

Darien Wood, BSMHiggs@LPC, 2014

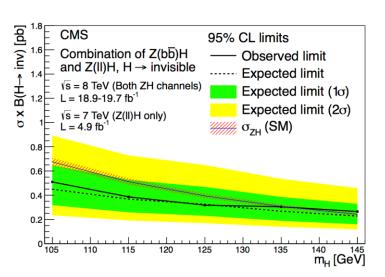
Summary

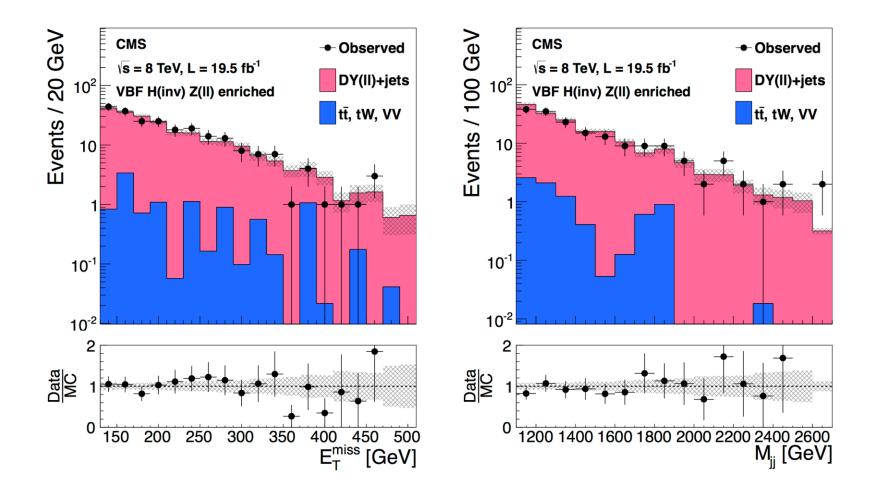
- LHC is sensitive to invisible decays of the Higgs through associated production modes with
 - Jets (VBF)
 - Z (୧୧), Z(bb)
- Strongest mode is VBF

- Limits on B(H→inv) at 95% CL
 - Direct: B<58% (CMS, VBF+ZH)
 - Indirect+direct: B<37%
 (ATLAS visible + ZH)
- In the Higgs portal model of Dark Matter, these results interpreted as limits on DM-nucleon scattering cross sections

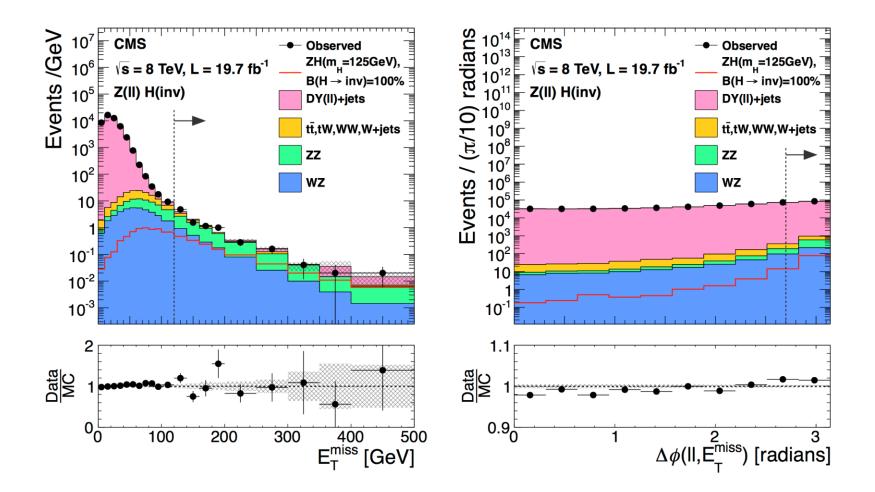
BACKUPS

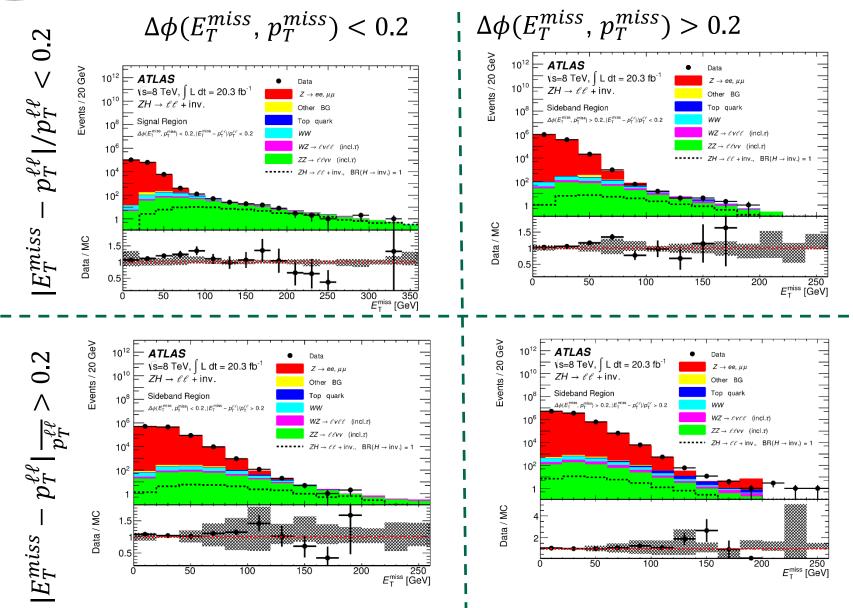
06-Nov-2014


Darien Wood, BSMHiggs@LPC, 2014

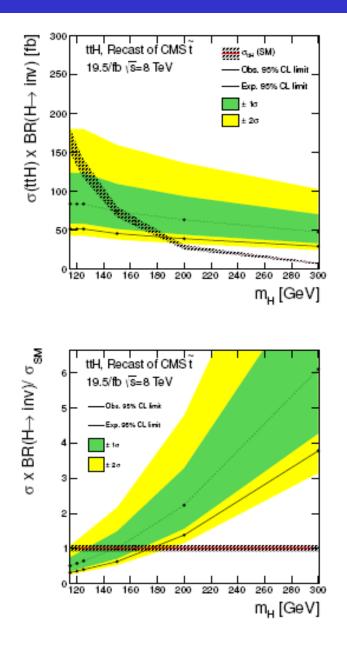

Type	Source	Background uncertainty(%)	Signal uncertainty(%)
	PDFs	5.0	5.7
	Factorization/renormalization scale	6.4	7.0
Norm.	Luminosity	2.3	2.2 - 2.6
	Lepton trigger, reconstruction, isolation	2.7	3.0
	Drell–Yan normalization	4.8	—
	tt, Wt, WW & W+jets normalization	1.0	—
	MC statistics (ZH, ZZ, WZ)	1.8 - 3.8	3.0-4.0
	Control region statistics $(DY(\ell\ell) + jets)$	0.6 - 1.2	—
Shape	Control region statistics (tt, Wt, WW & W+jets)	2.0-3.8	—
	Pile up	0.2	0.3
	b-tagging efficiency	0.2	0.2
	Lepton momentum scale	0.9	1.0
	Jet energy scale/resolution	2.4-3.1	2.6 - 3.2
	$E_{\mathrm{T}}^{\mathrm{miss}}$ scale	1.7-2.9	1.4-2.3

Type	Source	Background uncertainty(%)	Signal uncertainty(%)
	Luminosity	0.9	2.6
	Factorization/renormalization scale and PDFs		7
Norm.	Signal $p_{\rm T}$ boost EW/QCD corrections		6
	Background data/MC scale factors	8	
	Single-top-quark cross section	1	—
	Diboson cross section	4	—
	Trigger	1	5
	Jet energy scale	4	3
Shape	Jet energy resolution	3	3
-	$E_{\mathrm{T}}^{\mathrm{miss}}$ scale	1	2
	b tagging	7	5
	MC statistics	3	3
	MC modelling (V+jets and $t\bar{t}$)	3	—





ATLAS $Z(\ell \ell)H(inv)$ – DY Background estimate



arXiv:1408.0011: $t\bar{t}H(inv)$ reinterpretation of CMS stop search

- Zhou, Khechadoorian, Whiteson and Tait
- Reinterpretation of CMS stop search
 - CMS, Eur.Phys.J. C73,
 2677 (2013),
 1308.1586.
- Signature: $t\bar{t} + E_T^{miss}$
- Observed (expected)
 95% CL limits on
 B(inv):
 - 0.40 (0.65)

Scalar:

$$\sigma_{S-N}^{SI} = \frac{4\Gamma_{inv}}{m_H^3 v^2 \beta} \frac{m_N^4 f_N^2}{(M_\chi + m_N)^2}$$

 Vector:
 $\sigma_{V-N}^{SI} = \frac{16\Gamma_{inv} M_\chi^4}{m_H^3 v^2 \beta (m_H^4 - 4M_\chi^2 m_H^2 + 12M_\chi^4)} \frac{m_N^4 f_N^2}{(M_\chi + m_N)^2}$

Fermion: $\sigma_{\rm f-N}^{\rm SI} = \frac{8\Gamma_{\rm inv}M_{\chi}^2}{m_{\rm H}^5 v^2 \beta^3} \frac{m_{\rm N}^4 f_{\rm N}^2}{(M_{\chi} + m_{\rm N})^2}.$

Darien Wood,

