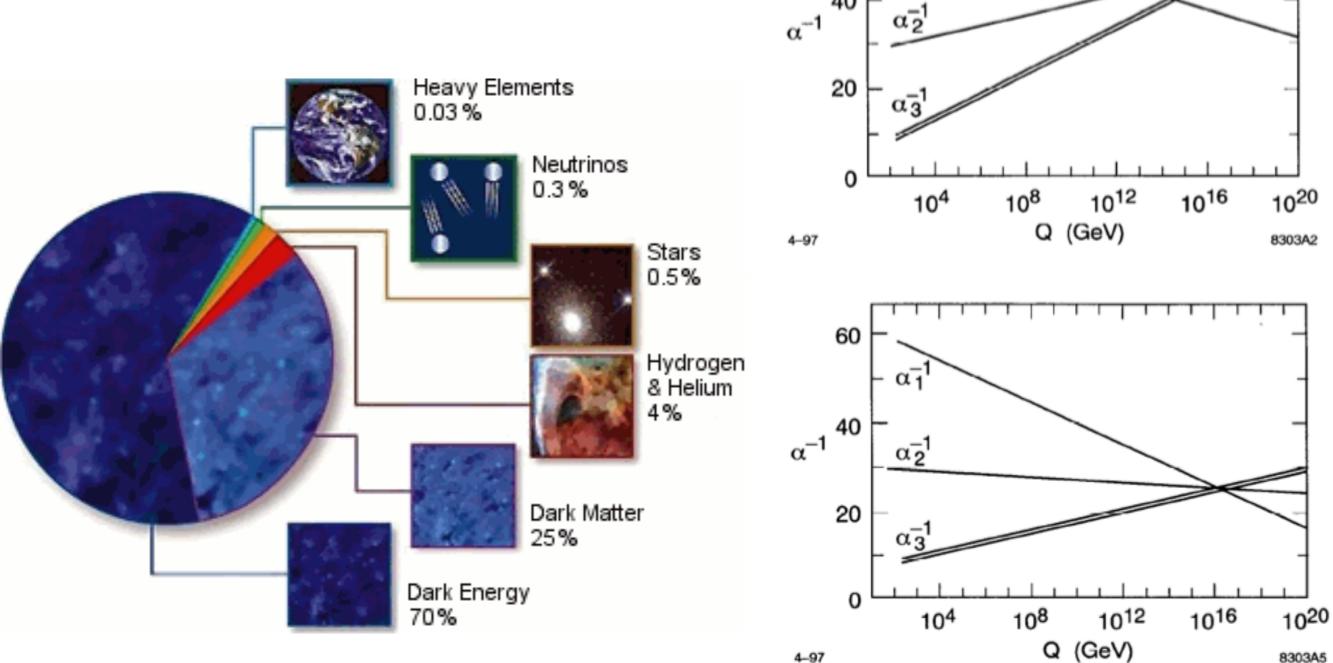
ATLAS SUSY Higgs Searches (H,A, H[±])

Trevor Vickey (on behalf of the ATLAS Collaboration)

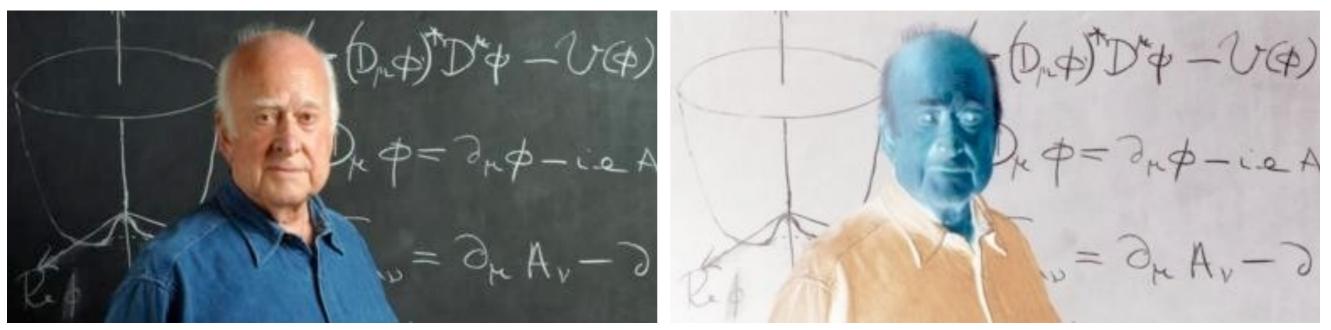
University of the Witwatersrand, South Africa University of Oxford, United Kingdom

November 3-5, 2014

BSM Higgs Workshop, Fermilab, Chicago, USA


Motivation for Supersymmetry

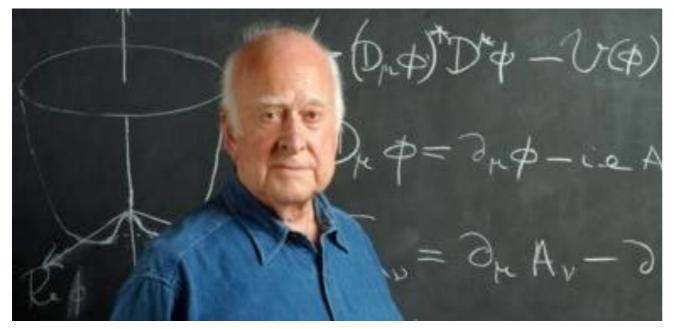
60


40

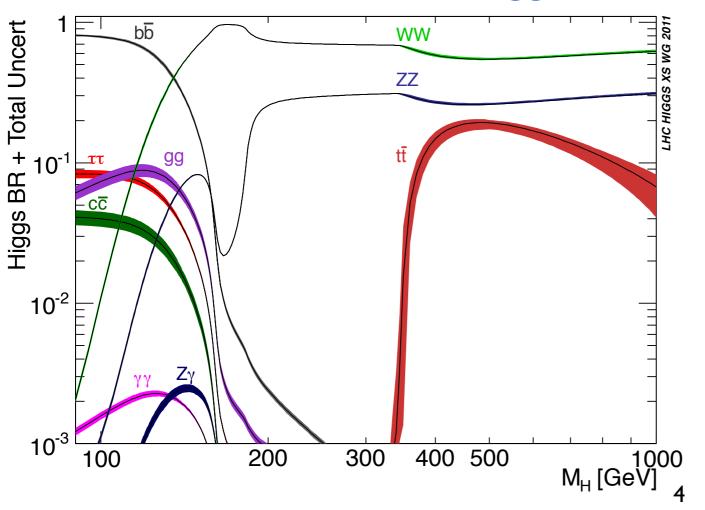
 α_1

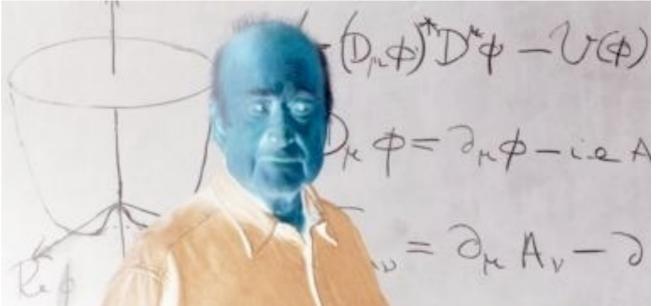
- Naturalness (Hierarchy Problem)
- Unification of the forces (gauge couplings)
- Provides a candidate for Dark Matter

If the (light) Higgs mass is ~125 GeV, what next?

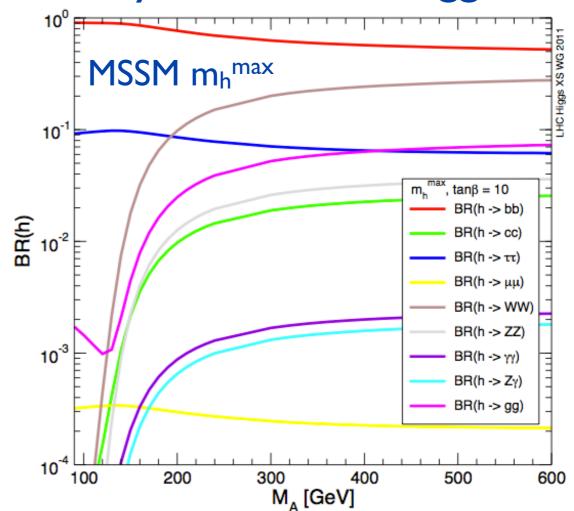


Standard Model Higgs

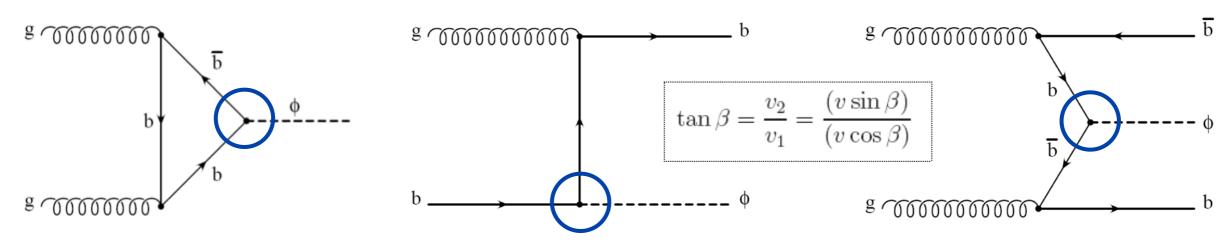

Beyond the SM Higgs


- Suppose that this is not the Standard Model Higgs (focus of many talks in this week's workshop)
 - Higgs with different couplings? ⇒ MSSM, Fermiophobic, Higgs impostor
 - More complicated Higgs sector? ⇒ MSSM, Doubly-charged Higgs, Composite
 - Light scalar Higgs? \Rightarrow NMSSM
 - Hidden Higgs sector? \Rightarrow Higgs to long-lived particles
- The MSSM is compatible with a 125 GeV Higgs

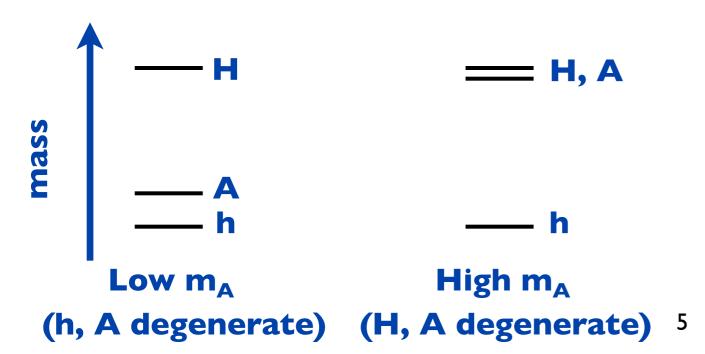
If the (light) Higgs mass is ~125 GeV, what next?

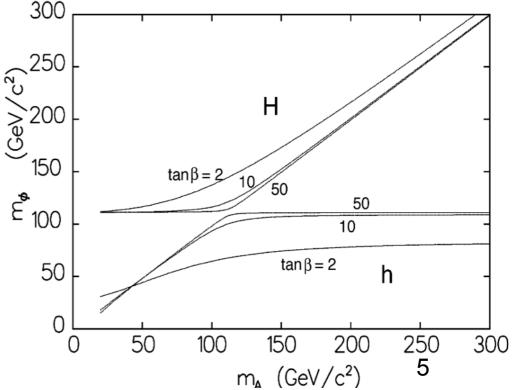


Standard Model Higgs

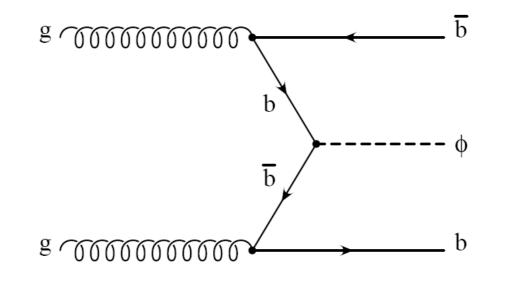


Beyond the SM Higgs

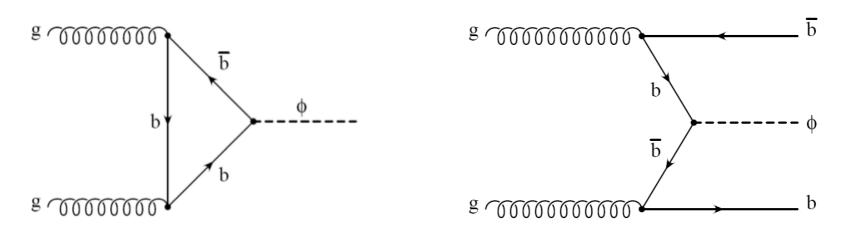



MSSM Higgs Sector

- Consider the case of an MSSM Higgs at the LHC
 - 2 Higgs doublets give rise to 5 physical Higgs bosons: h, H,A, H[±]
 - Enhanced coupling to 3rd generation; strong coupling to down-type fermions (at large tanβ get strong enhancements to h/H/A production rates)
 - Diagrams with bbp vertex enhanced proportional to $tan^2\beta$ where $\phi=h,H,A$

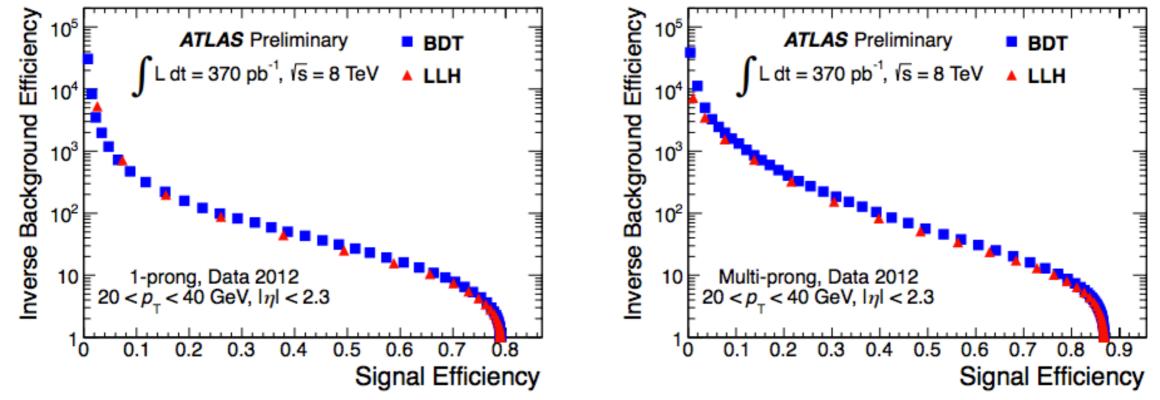


• Can parameterize the masses of the Higgs bosons with two free parameters: $\tan\beta$ and m_A


Neutral SUSY Higgs Searches in ATLAS

MSSM $\phi = h/A/H$

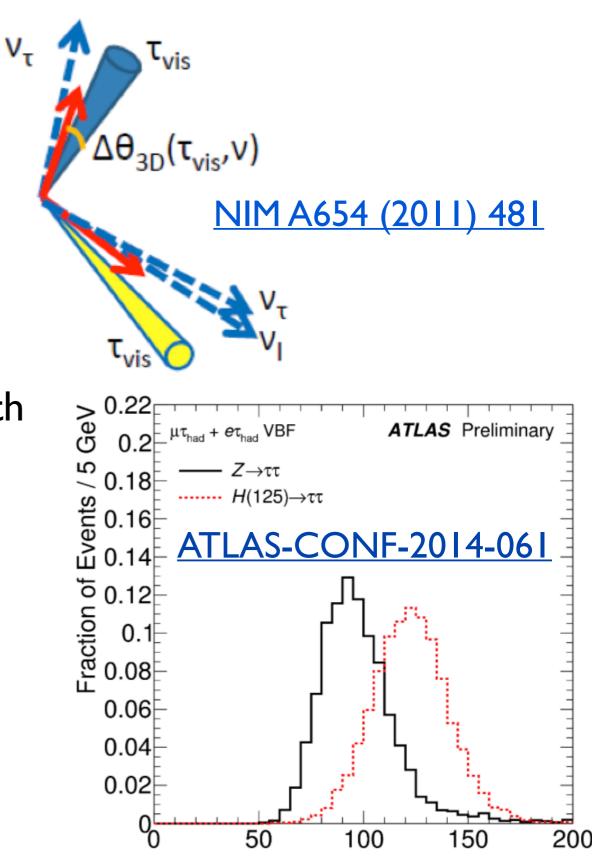
MSSM Higgs Search $(\phi \rightarrow \tau^+ \tau^-)$


- Latest ATLAS MSSM Neutral Analysis uses ~20 fb⁻¹ of 8 TeV data
 - The TT channel is very important for neutral MSSM searches: has a larger predicted BR than μμ (~10% versus ~0.03%) and less background than the bb channel
 - Can use different categories target main production mechanisms
 - "no b-tag" targets gluon-fusion (dominant mode at small tanβ)
 - "b-tag" targets b-associated production (dominant mode at large tan β)

- Three main decay channels, depending on the τ decay
 - lep-lep (e-µ) uses τ decays to e and µ plus neutrinos (~6%)
 - lep-had uses leptonic and hadronic decays (~46%) <u>arXiv:1409.6064</u>
 - had-had uses exclusively hadronic decays (~42%)
- Each of these final states has been optimized for a specific Higgs mass range

Reconstruction of hadronic T decays The signature of hadronic T decays are 1 or 3 tracks, collimated jet,

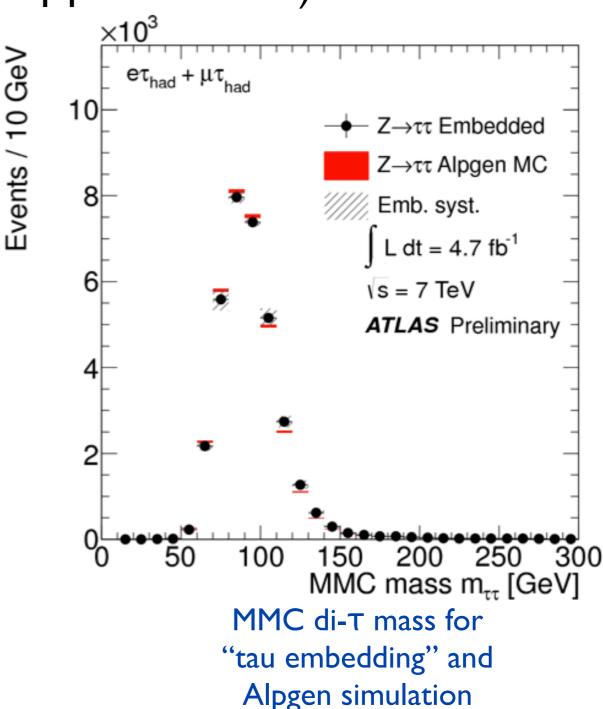
- The signature of hadronic τ decays are 1 or 3 tracks, collimated jet, possibly EM clusters
- Objects compatible with this signature are reconstructed
 - Seed from jet objects by considering each of them as a τ candidate
 - Identify a vertex consistent with a T decay
 - Associate tracks within a core cone ($\Delta R \le 0.2$) of the τ axis to jet objects



- Backgrounds from QCD jets, electrons and muons are rejected using dedicated algorithms
 <u>ATL-CONF-2013-064</u>
 - Discriminate using tracking information and cluster topology variables

Mass Reconstruction with T leptons

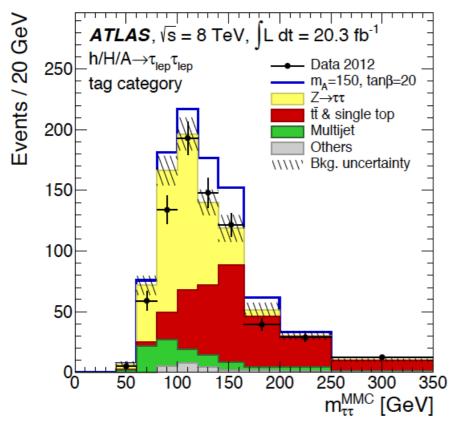
- Missing Mass Calculator technique
 - A step beyond the "collinear mass"
 - Assume the angle between the neutrinos and the visible hadronic Ts (Δθ) is non-zero
 - End up with a system of equations with
 6 8 unknowns
 - Use a likelihood to solve this under-constrained set of equations

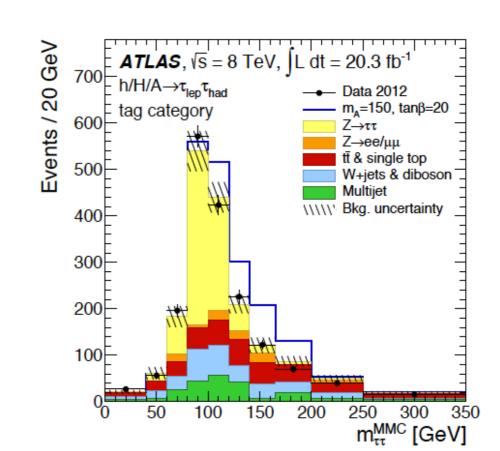

Resolution 14-21%, depending on decay mode

m^{MMC}_{ττ} [GeV]

Special Techniques Used with T leptons

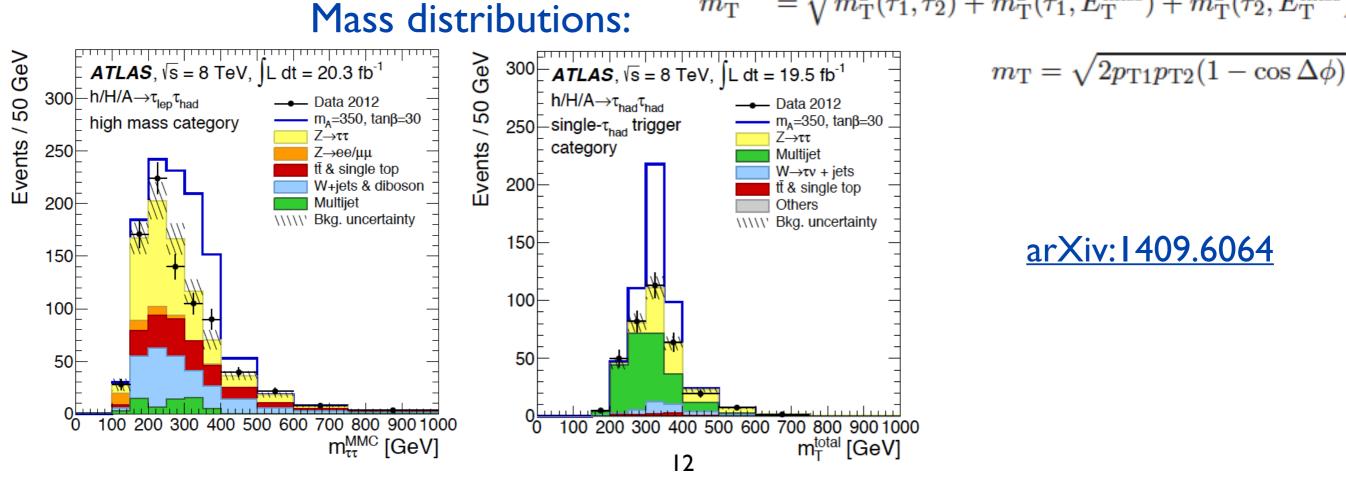
- $Z \rightarrow \tau \tau$ is the most important (irreducible) background source for di- τ final states at low mass
- Embedding technique (" τ -embedded" $Z \rightarrow \mu \mu$ data events)
- A semi-data-driven method: select an adequately pure Z→µµ event sample from data and then replace the muons with simulated taus
- Pile-up, underlying event, kinematics, etc. are all taken directly from the data
- ATLAS charged Higgs search also uses embedding for ttbar backgrounds (replace single muon from W decay)

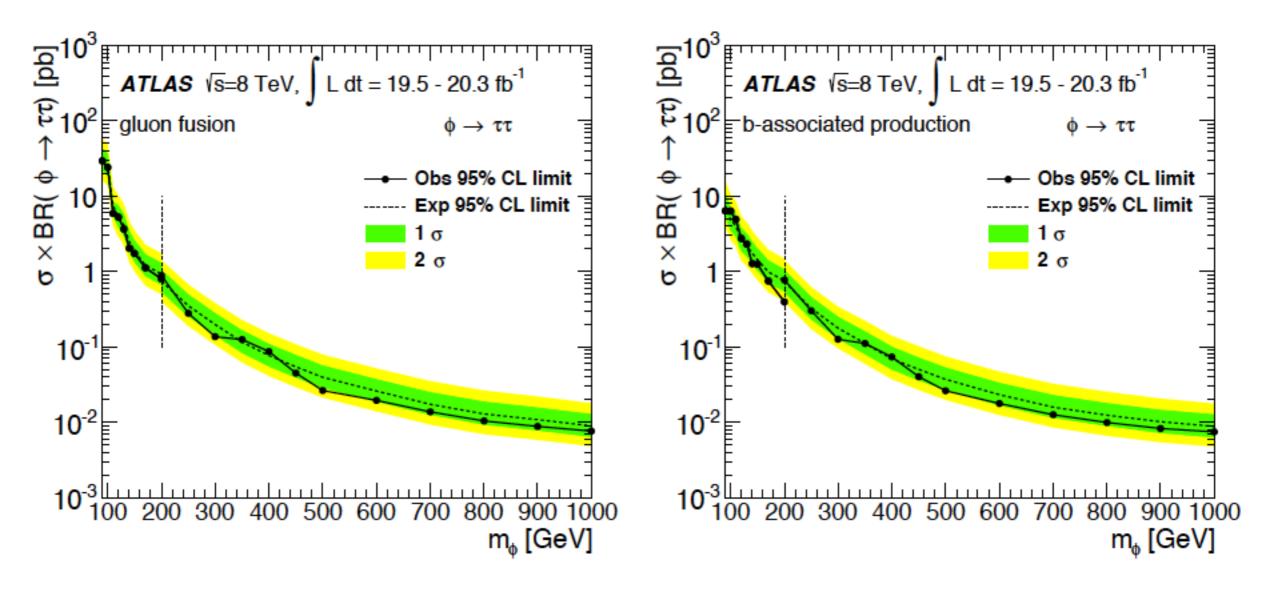



MSSM Higgs Search $(\phi \rightarrow \tau^+ \tau^-)$

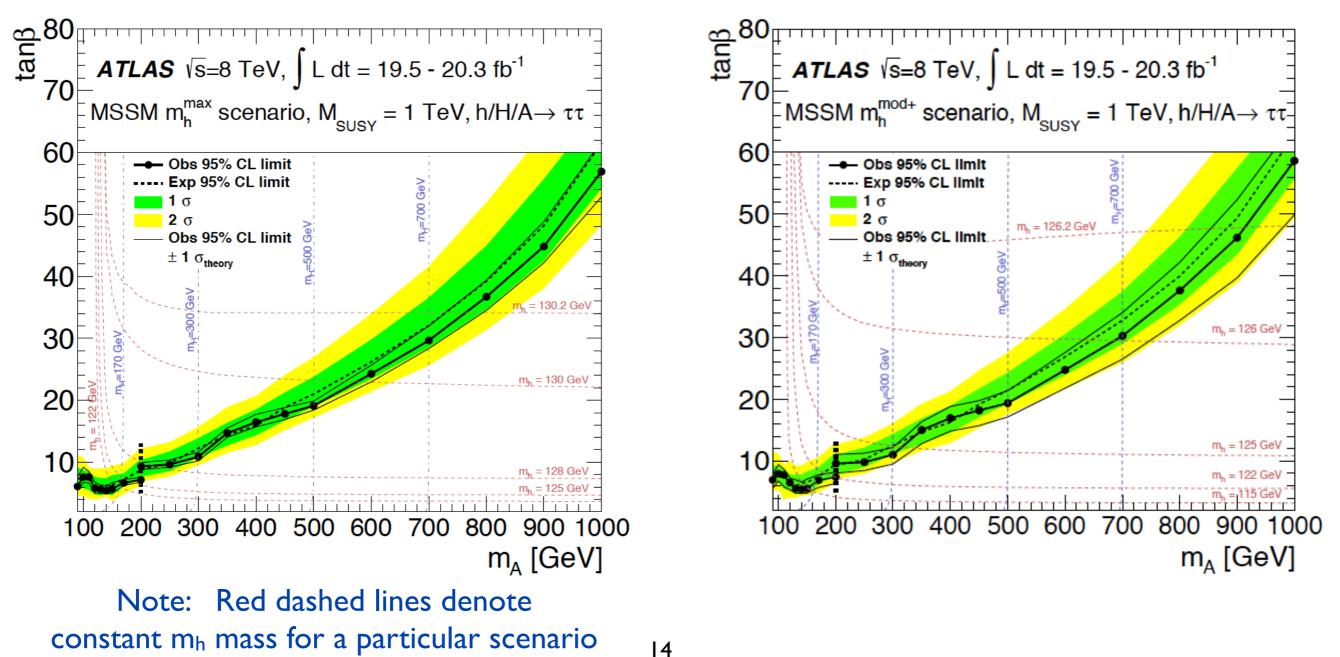
- MSSM Neutral Analyses (three main channels, depending on the T decay)
 - The e-µ and low-mass lep-had channels are separated into b-tagged and b-vetoed categories
 <u>arXiv:1409.6064</u>
 - The e-µ analysis: Use single e or e-µ triggers; opposite charge; require presence or absence of b-jet; Z →TT bkgnd from embedding; ttbar from simulation (normalized to data control region); W+jets, single-top, diboson all from simulation; multi-jets from 2D sideband method
 - The low-mass lep-had analysis: Use single e or single μ triggers; Z $\rightarrow \tau \tau$ bkgnd from embedding;W+jets, Z(ee, $\mu\mu$)+jets, ttbar single-top from simulation (normalized to data control region); diboson from simulation

11

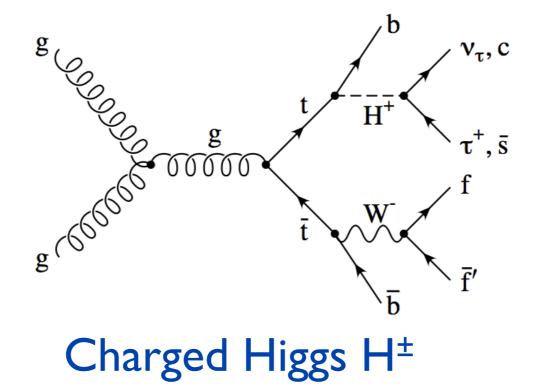

Mass distributions:


MSSM Higgs Search $(\phi \rightarrow \tau^+ \tau^-)$

- MSSM Neutral Analyses (three main channels, depending on the τ decay)
 - The high-mass lep-had analysis: Targets m_A ≥ 200 GeV; Use single e or single µ triggers; Z → TT bkgnd from embedding; W+jets, Z(ee,µµ)+jets, ttbar single-top from simulation (normalized to data control region); diboson from simulation; exploit high-mass kinematics (taus are back-to-back)
 - **The had-had analysis:** Use single and double hadronic τ triggers; $p_T > 50$ GeV, opposite charge; exploit high-mass kinematics (taus are back-to-back); dominant bkgnd is multi-jets and m_T is used as the final discriminant; other bkgnds are Z+jets (due to high trigger thresholds, no embedding used), W+jets, ttbar and diboson Mass distributions: $m_T^{\text{total}} = \sqrt{m_T^2(\tau_1, \tau_2) + m_T^2(\tau_1, E_T^{\text{miss}}) + m_T^2(\tau_2, E_T^{\text{miss}})}$

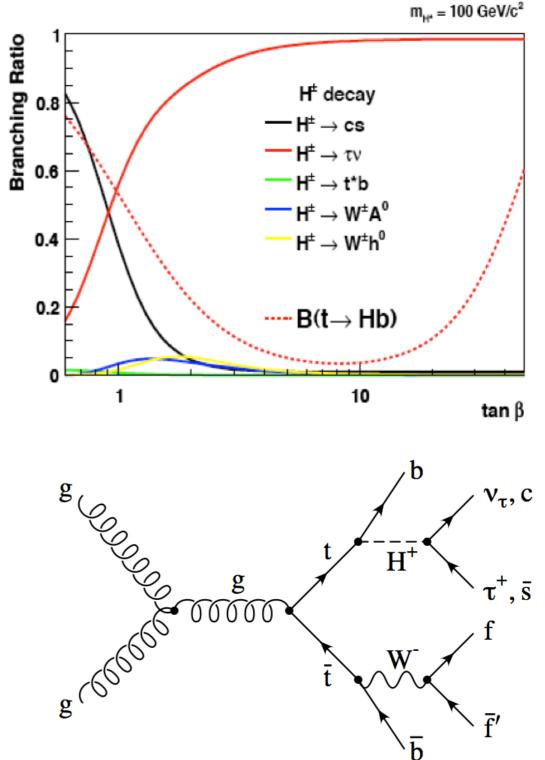

MSSM Neutral Higgs Search

- Statistically combine the T_{lep}-T_{had}, T_{had}-T_{had}, and T_{lep}-T_{lep} channels for one exclusion limit
- We determine a σ x BR limit (h/A/H→ττ) for gluon-fusion and b-associated production separately; exclusions range from 30 pb to about 7 fb, depending on the Higgs mass and production mechanism



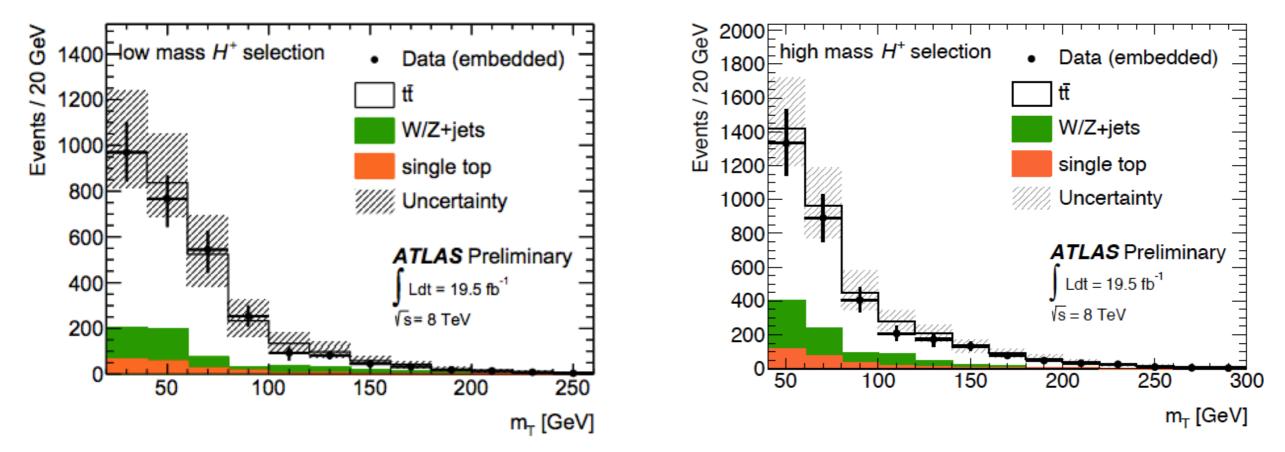
MSSM Neutral Higgs Search

- Statistically combine the T_{lep} - T_{had} , T_{had} - T_{had} , and T_{lep} - T_{lep} channels for one exclusion limit arXiv:1409.6064
- We also show limits in the mh^{max} and mh^{mod} benchmark scenarios
- In the m_h^{max} scenario, lowest tan β constraint excludes tan β > 5.4 for m_A = 140 GeV


Charged SUSY Higgs Searches in ATLAS

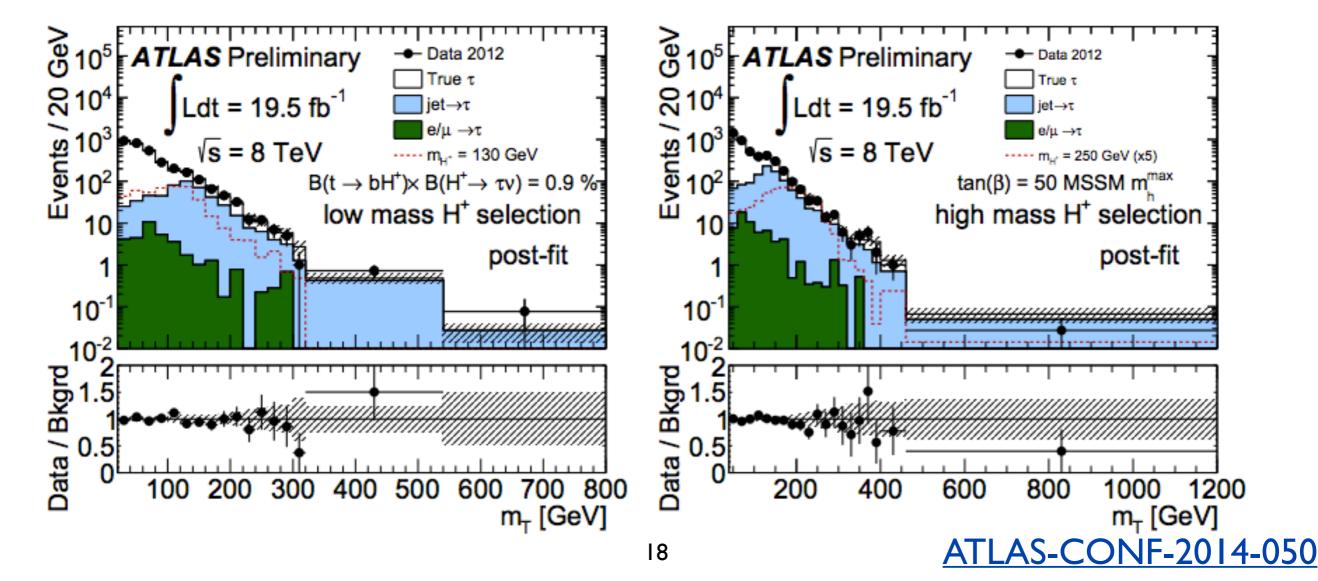
Charged MSSM Higgs Searches

- Charged Higgs bosons could be expected from the MSSM Higgs sector
- H+ Production:
 - Light H⁺: $pp \rightarrow tt \rightarrow bW bH^+$
 - Heavy H^+ : gb \rightarrow t H^+ and gg \rightarrow tb H^+
- H+ Decay:
 - Light H⁺: Almost exclusively to TV (at low tanβ predominantly to cs)
 - Heavy H⁺: tb; τν; χ⁺χ⁰

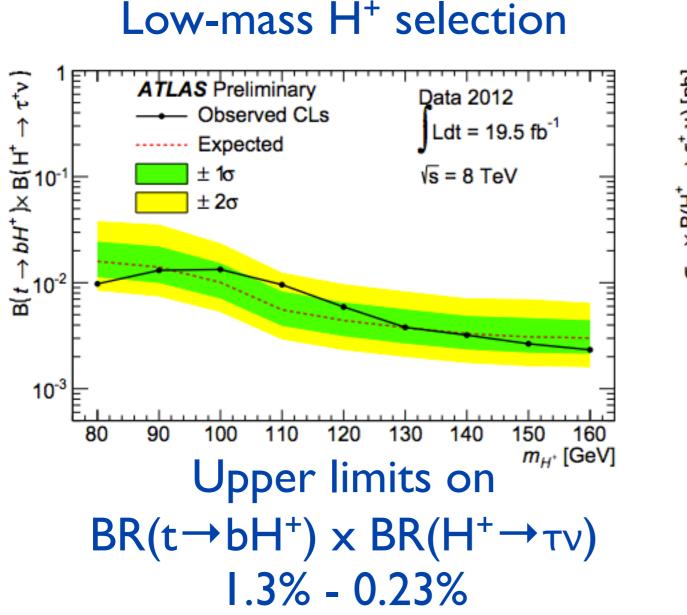

- ATLAS charged Higgs searches with taus:
 - Use final states with τνjjb and τνjjbb
 - $tt \rightarrow [H^{\pm}b][Wb] \rightarrow [\tau vb][qqb]$
 - $gb \rightarrow [t][H^{\pm}] \rightarrow [qqb][\tau v]$
 - $gg \rightarrow [tb][H^{\pm}] \rightarrow [qqbb][\tau v]$

Charged Higgs: $H^+ \rightarrow \tau v$

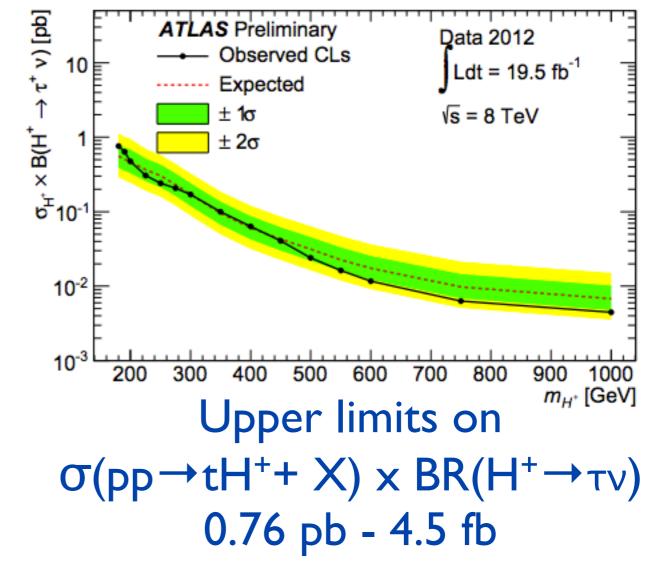
- A cut-based analysis on ~20 fb⁻¹ of 8 TeV data; only using hadronic taus; separate into low- and high-mass regions
- Again, we use some special techniques
 - Embedding is used to estimate the dominant background containing true hadronic τ decays; we select a μ +jets sample and replace the μ with a Monte Carlo τ


ATLAS-CONF-2014-050

- Use events passing hadronic τ + MET trigger.
- The transverse mass is used as the final discriminating variable


Charged Higgs: $H^+ \rightarrow \tau v$

- Backgrounds with jet faking tau are estimated using data-driven control regions
- Backgrounds with e/µ faking tau are small (due to veto algorithms) and are estimated using simulated events
- For an MSSM Charged Higgs in the m_h^{max} scenario, with tan β = 50, we would expect ~230 events for a 130 GeV H⁺ and ~58 events for a 250 GeV H⁺


Charged Higgs: $H^+ \rightarrow \tau v$

• ATLAS Limits on charged Higgs production

Note: Additional input from theory regarding the region 160 GeV - 200 GeV would be helpful (no reliable calculation)

High-mass H⁺ selection

ATLAS-CONF-2014-050

Conclusions and Outlook

- During Run-I ATLAS has had a very active search program for Beyond the Standard Model Higgs bosons and we've been exploring the MSSM Higgs sector
 - Some searches in 7 TeV data not shown here (like MSSM $\phi \rightarrow \mu^+ \mu^-$ and $H^+ \rightarrow cs$)
 - No hint of an extended Higgs sector just yet; We have already pushed the constraints further than previous searches
 - Even with a SM-like Higgs observed, BSM Higgs searches will continue to be relevant (e.g., there are still regions of MSSM parameter space that are compatible with the observed Higgs at 125 GeV)
- Stay tuned for Run-II of the LHC; these are very exciting times!

Back-up Slides

The ATLAS Experiment at the CERN LHC

3-Level Trigger

Reducing the rate from 40 MHz to 200-300 Hz

Muon Spectrometer

($|\eta|$ <2.7):Air-core toroids with gas-based muon chambers; Muon trigger and measurement with momentum resolution < 10% up to $p_{\mu} \sim 1 \text{ TeV}$

HAD calorimetry

 $(|\eta| < 5)$: hermetic and highly segmented; Fe/scintillator Tiles (central), Cu/W-LAr (fwd) Trigger and measurement of jets and missing E_T E-resolution: $\sigma/E \sim 50\%/\sqrt{E} \oplus 0.03$

EM Calorimeter (|η|<3.2):

Pb-LAr Accordion; allows for e/ γ triggering, identification and measurement; E-resolution: $\sigma/E \sim 10\%/\sqrt{E}$

Inner Detector (|η|<2.5, B=2T): S

Pixels, Si strips, Transition Radiation detector (straws); Precise tracking and vertexing, allows for e/π separation; Momentum resolution: $\sigma/p_T \sim 3.8 \times 10^{-4} p_T$ (GeV) \oplus 0.015 i.e. $\sigma/p_T < 2\%$ for $p_T < 35$ GeV

ATLAS Datasets

2011 7 TeV 2012 8 TeV Total Integrated Luminosity [fb ⁻¹] Total Integrated Luminosity [fb ⁻¹] ATLAS Online Luminosity ATLAS Online Luminosity √s = 7 TeV 30 \sqrt{s} = 8 TeV 7 LHC Delivered LHC Delivered 6 25 ATLAS Recorded ATLAS Recorded 5 Total Delivered: 5.61 fb⁻¹ Total Delivered: 23.3 fb⁻¹ 20 Total Recorded: 21.7 fb⁻¹ Total Recorded: 5.25 fb⁻¹ 4 15 3 10 2 5 1 0 0^{[___} 26/03 28/02 30/04 30/06 31/10 17/12 30/08 31/05 06/08 11/10 Day in 2011 Day in 2012

Monte Carlo Generators Used

Charged Higgs:

Process	Generator	Cross section [pb]	
SM tt (inclusive)	MC@NLO	253	[29]
Single top quark <i>t</i> -channel (≥ 1 lepton)	AcerMC	28.4	[30]
Single top quark s-channel (≥ 1 lepton)	MC@NLO	1.8	[31]
Single top quark Wt-channel (inclusive)	MC@NLO	22.4	[32]
$W \to \ell \nu$	ALPGEN	3.6×10^{4}	[35]
$Z/\gamma^* \to \ell\ell \text{ with } m(\ell\ell) > 10 \text{ GeV}$	ALPGEN	1.7×10^{4}	[36]
$WW (\geq 1 \text{ electron/muon})$	HERWIG	20.9	[37]
$ZZ (\geq 1 \text{ electron/muon})$	HERWIG	1.5	[37]
$WZ (\geq 1 \text{ electron/muon})$	HERWIG	7.0	[37]
H^+ signal ($m_{H^+} = 250 \text{GeV}$)	PYTHIA 8	0.2	

Table 1: Cross sections for the simulated processes and reference generators used to model them. For the heavy H^+ signal selection, the value shown is the cross section times $\mathcal{B}(H^+ \to \tau^+ \nu)$ for the MSSM m_h^{max} scenario [40], corresponding to $m_{H^+} = 250 \text{ GeV}$ and $\tan\beta = 50$. The low mass signal, which is not included in the table, assumes one H^+ produced per $t\bar{t}$ decay, so it is a fraction of the $t\bar{t}$ cross section. The existing published limit on $\mathcal{B}(t \to bH^+)$ for $m_{H^+} = 130 \text{ GeV}$ is 0.9% [18].

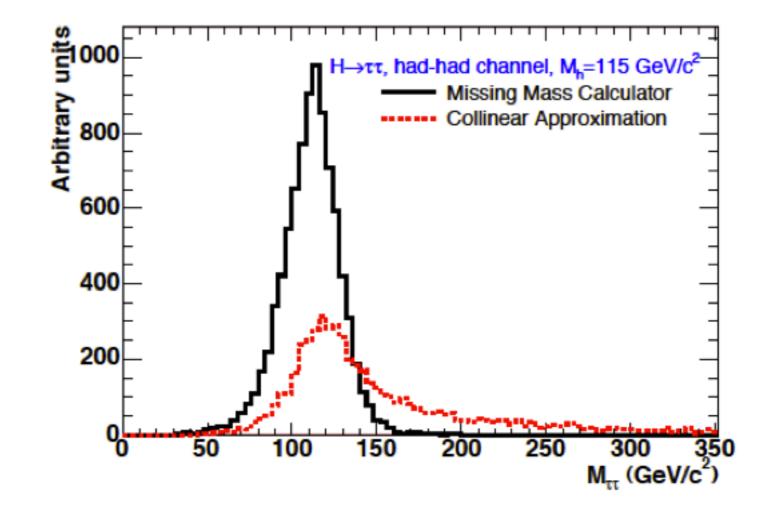
MSSM Benchmarks Used

Alternative benchmark scenarios

arXiv: 1302.7033v2

\mathbf{m}_{h}^{max}

m_h^{mod+}

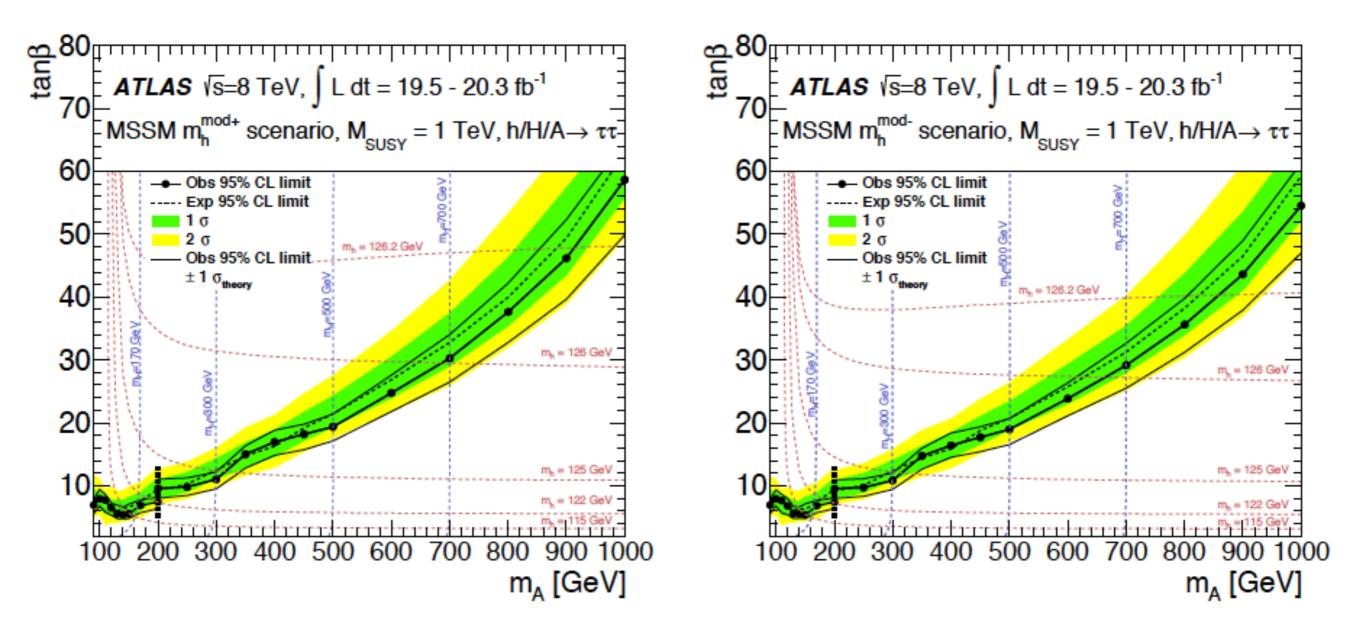

m_h^{mod}

 $m_t = 173.2 \text{ GeV},$ $M_{SUSY} = 1000 \text{ GeV},$ $\mu = 200 \text{ GeV},$ $M_2 = 200 \text{ GeV},$ $X_t^{OS} = 2 M_{SUSY} \text{ (FD calculation)},$ $X_t^{\overline{MS}} = \sqrt{6} M_{SUSY} \text{ (RG calculation)},$ $A_b = A_\tau = A_t,$ $m_{\tilde{g}} = 1500 \text{ GeV},$ $M_{\tilde{l}_3} = 1000 \text{ GeV}.$

$$m_t = 173.2 \text{ GeV},$$

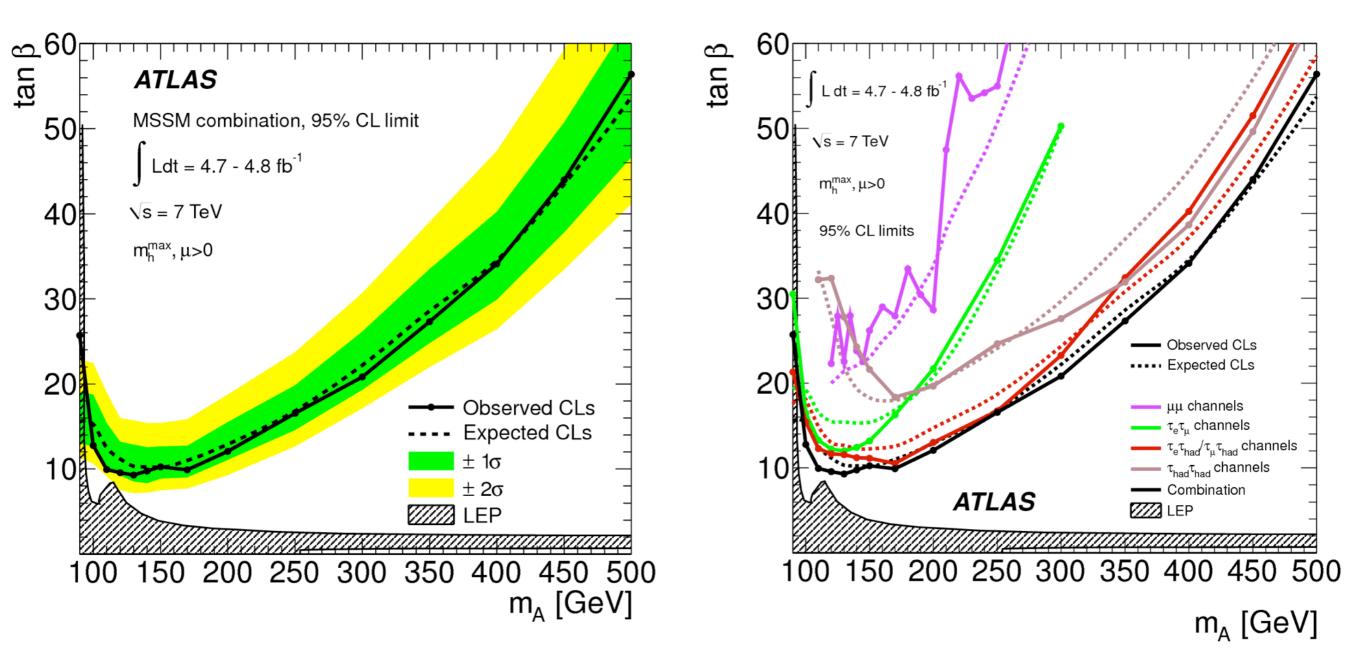
 $M_{SUSY} = 1000 \text{ GeV},$
 $\mu = 200 \text{ GeV},$
 $M_2 = 200 \text{ GeV},$
 $X_t^{OS} = 1.5 M_{SUSY} \text{ (FD calculation)},$
 $X_t^{\overline{\text{MS}}} = 1.6 M_{SUSY} \text{ (RG calculation)},$
 $A_b = A_\tau = A_t,$
 $m_{\tilde{g}} = 1500 \text{ GeV},$
 $M_{\tilde{l}_3} = 1000 \text{ GeV}.$

$$\begin{split} m_t &= 173.2 \ {\rm GeV}, \\ M_{\rm SUSY} &= 1000 \ {\rm GeV}, \\ \mu &= 200 \ {\rm GeV}, \\ M_2 &= 200 \ {\rm GeV}, \\ X_t^{\rm OS} &= -1.9 \ M_{\rm SUSY} \ ({\rm FD\ calculation}), \\ X_t^{\rm \overline{MS}} &= -2.2 \ M_{\rm SUSY} \ ({\rm RG\ calculation}), \\ A_b &= A_\tau = A_t, \\ m_{\tilde{g}} &= 1500 \ {\rm GeV}, \\ M_{\tilde{l}_3} &= 1000 \ {\rm GeV} \ . \end{split}$$


MMC vs Collinear Mass

MSSM Neutral Higgs Search at 8 TeV

• Alternative benchmark scenarios


arXiv:1409.6064

MSSM Neutral Higgs Search at 7 TeV

- Combine the τ_{lep} - τ_{had} , τ_{had} - τ_{had} , τ_e - τ_{μ} and $\mu\mu$ channels for one exclusion limit
 - Limit with the m_h^{max} benchmark scenario
 - Also determine a $\sigma \times BR$ limits

JHEP02 (2013) 095

MSSM Neutral Higgs Observed Events (lep-lep)

	Tag category	Veto category
Signal $(m_A = 150 \text{ G})$	GeV, $\tan \beta = 2$	20)
h ightarrow au au	8.7 ± 1.9	244 ± 11
$H \rightarrow \tau \tau$	65 ± 14	882 ± 45
$A \rightarrow \tau \tau$	71 ± 15	902 ± 48
$Z/\gamma^* \to \tau \tau + \text{jets}$	418 ± 28	54700 ± 3800
Multi-Jet	100 ± 21	4180 ± 670
$t\bar{t}$ and single top	421 ± 46	2670 ± 360
Others	25.8 ± 7.4	4010 ± 280
Total background	965 ± 59	65500 ± 3900
Data	904	65917

Table 1. Number of events observed in the $h/H/A \rightarrow \tau_e \tau_\mu$ channel and the predicted background and signal. The predicted signal event yields correspond to the parameter choice $m_A = 150$ GeV and $\tan \beta = 20$. The row labelled "Others" includes events from diboson production, $Z/\gamma^* \rightarrow ee/\mu\mu$ and W+jets production. Combined statistical and systematic uncertainties are quoted. The signal prediction does not include the uncertainty due to the cross-section calculation.

MSSM Neutral Higgs Observed Events (lep-had)

Low-mass categories				
	Tag category		Veto category	
	e channel	μ channel	e channel	μ channel
Signal $(m_A = 150 \text{ GeV},$	$\tan\beta = 20)$			
h ightarrow au au	10.5 ± 2.8	10.5 ± 2.6	194 ± 13	192 ± 14
$H \to \tau \tau$	86 ± 26	86 ± 24	836 ± 60	822 ± 61
$A \rightarrow \tau \tau$	94 ± 29	94 ± 27	840 ± 64	825 ± 62
$Z \rightarrow \tau \tau + \text{jets}$	403 ± 39	425 ± 42	31700 ± 2800	38400 ± 3300
$Z \rightarrow \ell \ell + \text{jets} \ (\ell = e, \ \mu)$	72 ± 24	33 ± 14	5960 ± 920	2860 ± 510
W+jets	158 ± 44	185 ± 58	9100 ± 1300	9800 ± 1400
Multi-jet	185 ± 35	66 ± 31	11700 ± 490	3140 ± 430
$t\bar{t}$ and single top	232 ± 36	236 ± 34	533 ± 91	535 ± 98
Diboson	9.1 ± 2.3	10.0 ± 2.5	466 ± 40	468 ± 42
Total background	1059 ± 81	955 ± 86	59500 ± 3300	55200 ± 3600
Data	1067	947	60351	54776

MSSM Neutral Higgs Observed Events (lep-had)

TT. 1

High-mass category		
Signal $(m_A = 350 \text{ GeV},$	$\tan\beta = 30)$	
$h \rightarrow \tau \tau$	5.60 ± 0.68	
$H \to \tau \tau$	$157~\pm~13$	
$A \rightarrow \tau \tau$	$152~\pm~13$	
$Z \to \tau \tau + \text{jets}$	380 ± 50	
$Z \to \ell \ell + \text{jets} \ (\ell = e, \ \mu)$	$34.9~\pm~7.3$	
W+jets	$213~\pm~40$	
Multi-jet	$57~\pm~20$	
$t\bar{t}$ and single top	$184~\pm~26$	
Diboson	$30.1~\pm~4.8$	
Total background	900 ± 72	
Data	920	

Table 2. Numbers of events observed in the $h/H/A \rightarrow \tau_{\text{lep}}\tau_{\text{had}}$ channel and the predicted background and signal. The predicted signal event yields correspond to the parameter choice $m_A = 150 \text{ GeV}, \tan \beta = 20$ for the low-mass categories and $m_A = 350 \text{ GeV}, \tan \beta = 30$ for the high-mass category. Combined statistical and systematic uncertainties are quoted. The signal prediction does not include the uncertainty due to the cross-section calculation.

MSSM Neutral Higgs Observed Events (had-had)

	Single- τ_{had} trigger (STT) category	$\tau_{\rm had} \tau_{\rm had} { m trigger}$ (DTT) category
Signal $(m_A = 350$	GeV, $\tan \beta = 30$)	
$h \rightarrow \tau \tau$	0.042 ± 0.039	11.2 ± 4.5
$H \rightarrow \tau \tau$	95 ± 18	182 ± 27
$A \rightarrow \tau \tau$	82 ± 16	158 ± 24
Multi-jet	216 ± 25	6770 ± 430
$Z/\gamma^* \to \tau \tau$	113 ± 18	750 ± 210
$W(\rightarrow \tau \nu)$ +jets	34 ± 8.1	410 ± 100
$t\bar{t}$ and single top	10.2 ± 4.4	76 ± 26
Others	0.50 ± 0.20	3.40 ± 0.80
Total background	374 ± 32	8010 ± 490
Data	373	8225

Table 3. Number of events observed in the $h/H/A \rightarrow \tau_{had}\tau_{had}$ channel and the predicted background and signal. The predicted signal event yields correspond to the parameter choice $m_A = 350 \text{ GeV}, \tan \beta = 30$. The row labelled "Others" includes events from diboson production, $Z \rightarrow \ell \ell$ and $W \rightarrow \ell \nu$ with $\ell = e, \mu$. Combined statistical and systematic uncertainties are quoted. The signal prediction does not include the uncertainty due to the cross-section calculation.

MSSM Neutral Higgs Systematics (low-mass)

Source of uncertainty	Uncertainty on μ (%)
Lepton-to- τ_{had} fake rate	14
$\tau_{\rm had}$ energy scale	12
Jet energy scale and resolution	11
Electron reconstruction & identification	8.1
Simulated backgrounds cross section and acceptance	7.5
Luminosity	7.4
Muon reconstruction & identification	7.2
<i>b</i> -jet identification	6.6
Jet-to- τ_{had} fake rate for electroweak processes ($\tau_{lep} \tau_{had}$)	6.2
Multi-jet background ($\tau_{\rm lep} \tau_{\rm lep}$, $\tau_{\rm lep} \tau_{\rm had}$)	6.1
Associated with the τ -embedded $Z \to \mu \mu$ sample	5.3
Signal acceptance	2.0
$e\mu$ trigger	1.5
$\tau_{\rm had}$ identification	0.8

Table 4. The effect of the most important sources of uncertainty on the signal strength parameter, μ , for the signal hypothesis of $m_A = 150$ GeV, $\tan \beta = 5.7$. For this signal hypothesis only the $h/H/A \rightarrow \tau_{\rm lep} \tau_{\rm had}$ and $h/H/A \rightarrow \tau_e \tau_{\mu}$ channels are used.

MSSM Neutral Higgs Systematics (high-mass)

Source of uncertainty	Uncertainty on μ (%)
$\tau_{\rm had}$ energy scale	15
Multi-jet background ($\tau_{had}\tau_{had}$, $\tau_{lep}\tau_{had}$)	9.8
$\tau_{\rm had}$ identification	7.9
Jet-to- τ_{had} fake rate for electroweak processes	7.6
$\tau_{\rm had} \ { m trigger}$	7.4
Simulated backgrounds cross section and acceptance	6.6
Signal acceptance	4.7
Luminosity	4.1
Associated with the τ -embedded $Z \to \mu \mu$ sample	1.2
Lepton identification	0.7

Table 5. The effect of the most important sources of uncertainty on the signal strength parameter, μ , for the signal hypothesis of $m_A = 350$ GeV, $\tan \beta = 14$. For this signal hypothesis only the $h/H/A \rightarrow \tau_{\text{lep}}\tau_{\text{had}}$ and $h/H/A \rightarrow \tau_{\text{had}}\tau_{\text{had}}$ channels are used.

Charged Higgs $(H^+ \rightarrow \tau v)$ Observed Events

Sample	Low mass H^+ selection	High mass H^+ selection
True τ_{had} (embedding method)	$2900 \pm 60 \pm 500$	$3400 \pm 60 \pm 400$
Misidentified jet $\rightarrow \tau_{had-vis}$	$490 \pm 9 \pm 80$	$990 \pm 15 \pm 160$
Misidentified $e \rightarrow \tau_{had-vis}$	$15 \pm 3 \pm 6$	$20 \pm 2 \pm 9$
Misidentified $\mu \rightarrow \tau_{had-vis}$	$18 \pm 3 \pm 8$	$37 \pm 5 \pm 8$
All SM backgrounds	$3400 \pm 60 \pm 500$	$4420 \pm 70 \pm 500$
Data	3244	4474
$H^+ (m_{H^+} = 130 \text{GeV})$	$230 \pm 10 \pm 40$	
$H^+ (m_{H^+} = 250 \text{GeV})$		$58 \pm 1 \pm 9$

Table 2: Expected event yields after all selection criteria and comparison with 19.5 fb⁻¹ of data. The values shown for the signal correspond to $\mathcal{B}(t \to bH^+) \times \mathcal{B}(H^+ \to \tau \nu) = 0.9\%$ for the low mass point and $\tan \beta = 50$ in the MSSM m_h^{max} scenario for the high mass point. Both statistical and systematic uncertainties are shown, in this order.

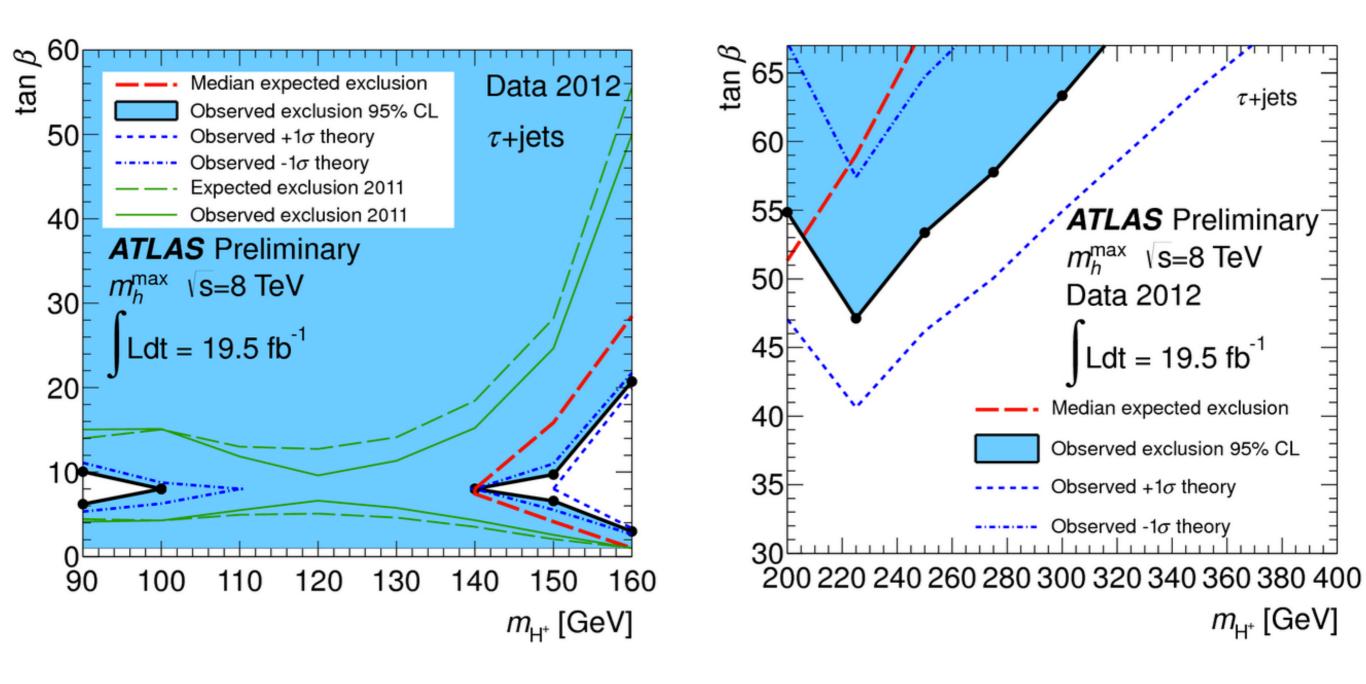
Charged Higgs $(H^+ \rightarrow \tau \nu)$ Systematics

Source of uncertainty	Low mass H^+ selection	High mass H^+ selection
Muon selection	< 1%	< 1%
Misidentified $\tau_{had-vis}$	5.6%	5.7%
Fitting function	2.1%	1.8%
Trigger definition	< 1%	< 1%
Residual correlations	1.4%	3.2%
$\tau_{\rm had-vis}$ energy scale	< 1%	< 1%

Table 3: Effect of systematic uncertainties on the combined trigger efficiencies for a low mass ($m_{H^+} = 130 \text{ GeV}$) and high mass ($m_{H^+} = 250 \text{ GeV}$) signal sample.

Source of uncertainty	Low mass H^+ selection	High mass H^+ selection
True τ_{had}		
Embedding parameters	3.0%	1.8%
Muon isolation	0.3%	2.3%
Parameters in normalisation	2.0%	2.0%
$\tau_{\rm had-vis}$ identification	2.2%	2.0%
$\tau_{\rm had-vis}$ energy scale	4.0%	3.6%
$\tau_{\text{had-vis}} + E_{\text{T}}^{\text{miss}}$ trigger	8.3%	8.3%
$\text{Jet} \rightarrow \tau_{\text{had-vis}}$		
Statistical uncertainty on $p_{\rm m}$	2.0%	3.4%
Statistical uncertainty on p_r	0.5%	0.5%
Jet composition	1.1%	1.9%
$\tau_{\rm had-vis}$ identification	0.8%	0.6%
e/μ contamination	0.5%	0.7%

Table 4: Dominant systematic uncertainties on the data-driven background estimates. The shift in event yield is given relative to the total background.


Charged Higgs $(H^+ \rightarrow \tau v)$ Systematics

Source of uncertainty	Normalisation uncertainty
Low mass H^+	
Generator model $(b\bar{b}W^-H^+)$	9%
Generator model $(b\bar{b}W^+W^-)$	9%
$t\bar{t}$ cross section	6%
Jet production rate (SM and H^+) (QCD scale)	11%
High mass H ⁺	
Generator model (H^+)	2-9%
Generator model (SM)	8%
$t\bar{t}$ cross section	6%
Jet production rate (H^+) (QCD scale)	1-2%
Jet production rate (SM) (QCD scale)	11%
H^+ production (4FS vs 5FS)	3-5%

Table 5: Systematic uncertainties arising from $t\bar{t}$ and signal generator modelling, and from the jet production rate. The uncertainties are shown for the $t\bar{t}$ background and the charged Higgs boson signal, for the low and high mass charged Higgs boson selections separately.

Charged Higgs limits in the MSSM (old)

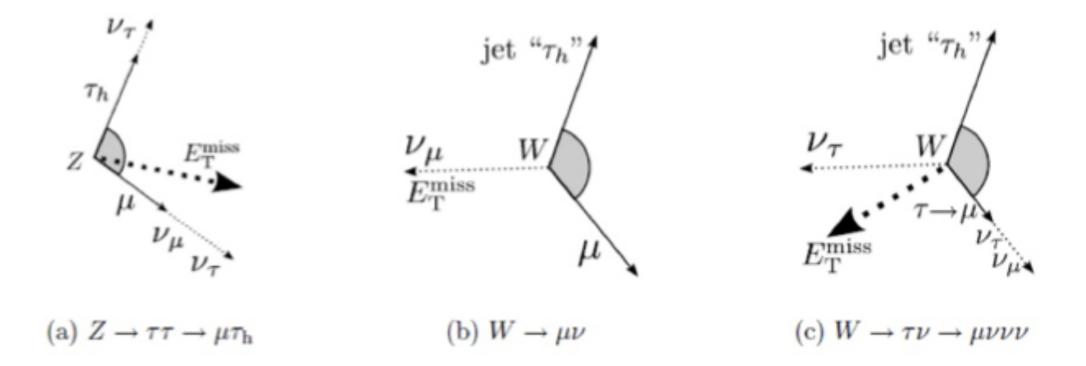
ATLAS-CONF-2013-090

Mass Reconstruction with T leptons

- Visible mass:
 - Invariant mass of the visible τ decay products
- Effective mass
 - Invariant mass of the visible τ decay products + MET
- Collinear mass:
 - Assume that neutrinos are emitted parallel to the visible τ decay products' direction \Rightarrow 2 equations and 2 unknowns

$$E_{x} = P_{v1} \cdot \cos(\theta_{1}) \cdot \cos(\varphi_{1}) + P_{v2} \cdot \cos(\theta_{2}) \cdot \cos(\varphi_{2})$$

$$E_{y} = P_{v1} \cdot \cos(\theta_{1}) \cdot \sin(\varphi_{1}) + P_{v2} \cdot \cos(\theta_{2}) \cdot \sin(\varphi_{2})$$

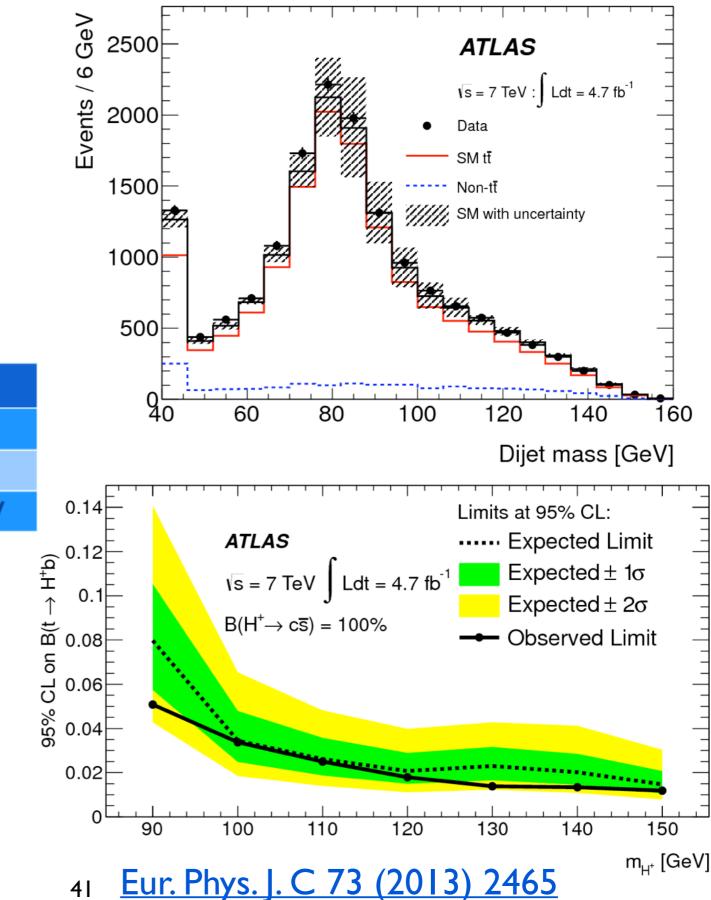

$$m_{collinear} = \frac{m_{vis}}{x_{1} x_{2}}$$

$$x_{1,2} \text{ are the momentum fractions carried away by the visible}$$

$$T \text{ products}$$

SumCosDeltaPhi

SumCosDeltaPhi:



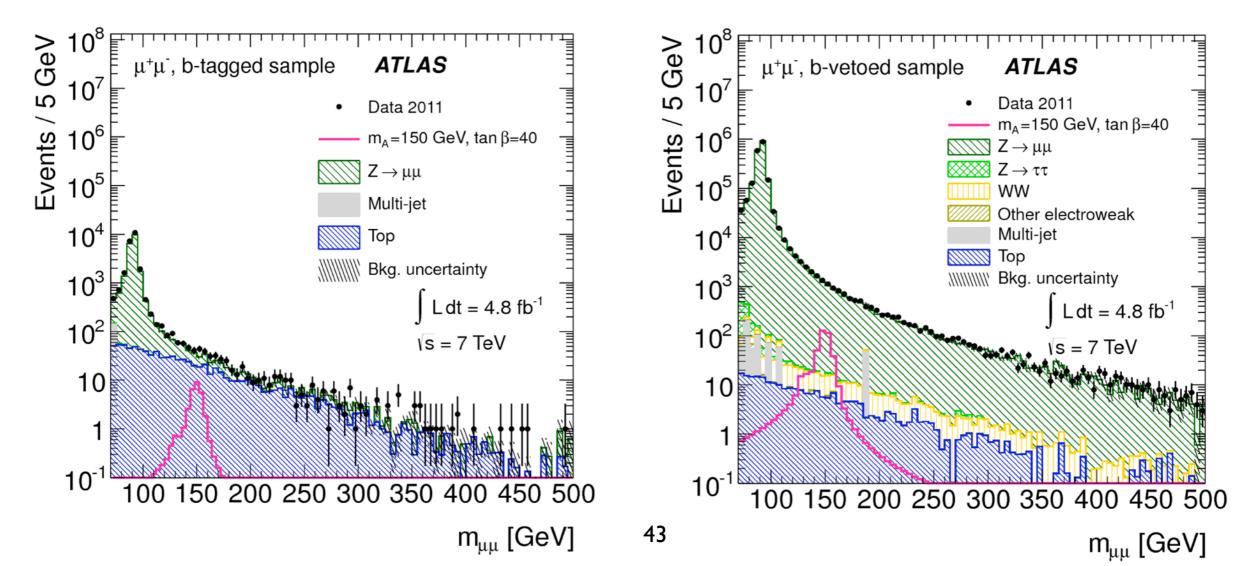
Charged Higgs: $H^+ \rightarrow c\overline{s}$ with 7 TeV data

- Light Higgs: $m(H^{\pm}) < m_t$
- Final state allows for full reconstruction of the H⁺ candidates
- Examine the di-jet spectrum and look for a second peak

tt → bW bH⁺ → b (e/mu) v b cs 1 isolated e/µ, pT > 20 GeV At least 4 jets, pT>20 GeV; one b-Tagged jet MET/MT cuts: MT>25 GeV (e); MT+MET>60GeV

$$\chi^{2} = \sum_{i=l,4jets} \frac{(p_{T}^{i,fit} - p_{T}^{i,meas})^{2}}{\sigma_{i}^{2}}$$
$$+ \sum_{j=x,y} \frac{(p_{j}^{UE,fit} - p_{j}^{UE,meas})^{2}}{\sigma_{UE}^{2}}$$
$$+ \sum_{k=bjj,blv} \frac{(M_{k} - M_{top})^{2}}{\sigma_{top}^{2}}.$$

Charged Higgs $(H^+ \rightarrow cs)$ Events and Systematics

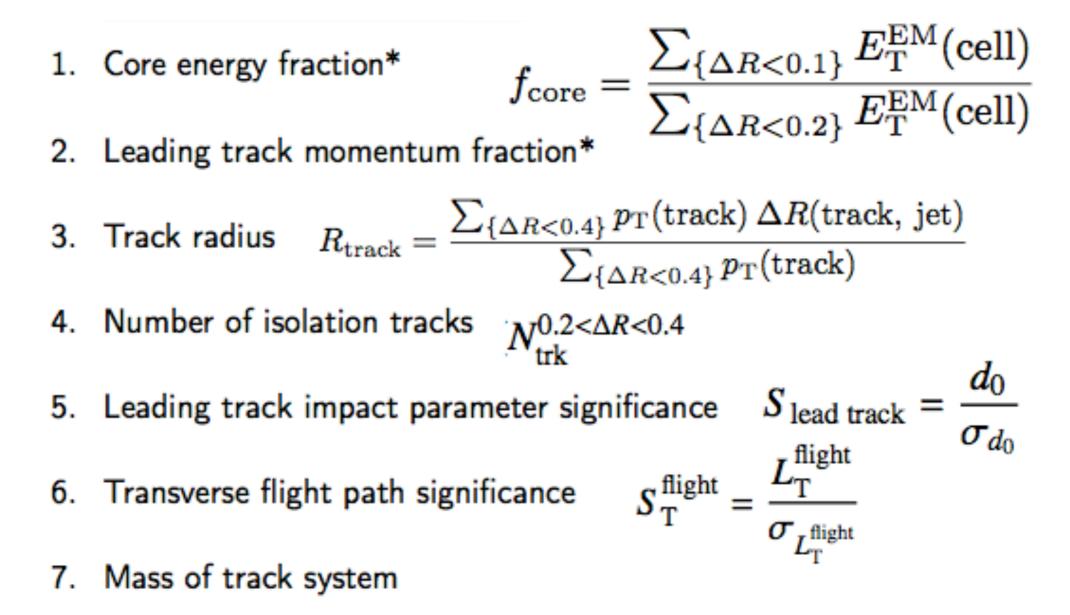

Channel	Muon	Electron
Data	193	130
SM $t\bar{t} \rightarrow W^+ b W^- \bar{b}$	156^{+24}_{-29}	106^{+16}_{-20}
W/Z + jets	17 ± 6	9±3
Single top	7±1	5±1
Diboson	0.30 ± 0.02	0.20 ± 0.02
QCD multijet	11 ±4	6±3
Total Expected (SM)	191^{+26}_{-30}	127^{+17}_{-21}
$\mathcal{B}(t \rightarrow H^+ b) = 10\%$:		
$t\bar{t} \rightarrow H^+ b W^- \bar{b}$	20^{+3}_{-4}	14^{+2}_{-2}
$t\bar{t} \rightarrow W^+ b W^- \bar{b}$	127^{+19}_{-23}	86 ⁺¹³ ₋₁₆
Total Expected ($\mathcal{B} = 10\%$)	181^{+21}_{-25}	120^{+14}_{-17}

	Systematic Source	
	Jet energy scale	+11, -13% (SM tt)
		+9, -12% (signal)
	b-Jet energy scale	±0.5%
	Jet energy resolution	±1%
	b-tagging efficiency	+4, -9%
2	MC generator	±4%
	Parton shower	±3%
_	ISR/FSR	±1%
_	Additional Interactions	±4%
	Luminosity	±3.4%
	Electron reconstruction	±1.6%
	Muon reconstruction	±0.2%
	Electron trigger	±0.2%
_	Muon trigger	±0.5%
	$t\bar{t}$ cross section	+7, -9%
	t quark mass	±7%

MSSM Higgs Searches $(\phi \rightarrow \mu^+ \mu^-)$

<u>IHEP02 (2013) 095</u>

- MSSM $\phi \rightarrow \mu^+ \mu^-$ channels
- Small BR but very clean final state
- Main event selection:
 - Lowest unprescaled single muon trigger
 - 2 isolated muons of opposite charge with p_T >20 GeV, $|\eta|$ <2.5
 - MET < 40 GeV
- Again, separation into b-tagged and b-vetoed categories
- Total background from sideband fits to di-muon invariant mass spectrum



Current T identification variables in BDT and LLH

Variable	LLH tau ID		BDT tau ID		e-veto	muon veto
	1-prong	3-prong	1-prong	3-prong	1-prong	1-prong
$f_{\rm core}^{\rm corr}$	•	•	•	•	•	
$f_{\text{track}}^{\text{corr}}$	•	•	•	•	•	
ftrack					•	•
R _{track}	•	•	•	•	•	
S lead track	•		•			
N ^{iso} track	•		•			
$\Delta R_{\rm max}$		•		•		
S_{T}^{flight}		•		•		
mtracks		•		•		
Ĵем					•	•
<i>Ј</i> нт					•	
$E_{T,max}^{strip}$					•	
fleadtrk HCAL					•	
$f_{\rm ECAL}^{\rm leadtrk}$					•	
<i>f</i> ps					•	
$f_{\rm EM}^{\pi^{\pm}}$					•	
f _{iso}					•	
R _{Had}					•	

Table 1: Comparison of variables used by the τ_{had-vis} identification algorithms: projective likelihood identification (LLH tau ID), boosted decision tree identification (BDT tau ID), boosted decision tree based electron veto (e-veto) and cut based muon veto (muon veto). Variable definitions can be found in Appendix A.

Current T identification variables

Maximum ∆R between jet-axis and core tracks
 *has pile-up correction term linear in N(vertex)