Beyond Doublets

Katy Hartling

Carleton University

BSM Higgs @ LPC Workshop Nov 3-5, 2014

Based on Hartling, Kumar & Logan, arXiv: 1410.5538, 1404.2640 and Hally, Logan & Pilkington, arXiv: 1202.5073

Outline

- Motivation: Why extend beyond doublets?
- General limits: How big can we go?
- **Difficulties with large scalar multiplets**: the ρ parameter.
- Focus: The Georgi-Machacek model
 - Model overview
 - Theoretical constraints
 - Decoupling limit
 - Experimental constraints
- Conclusions and summary: What next?

Why extend beyond scalar doublets?

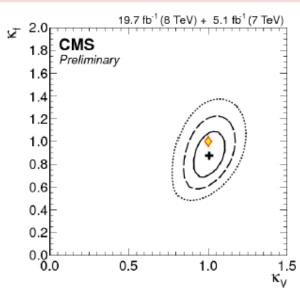
Larger multiplets can explain enhanced hVV couplings.

Models with isospin doublets or singlets have hVV couplings smaller than
or equal to those of the Standard Model (SM).

Table 1: Higgs couplings to WW $(Q=T^3+Y/2)$

SM	2HDM	SM + singlet	SM + general multiplet X
$i\frac{g^2}{2}g_{\mu\nu}$	$i\frac{g^2}{2}g_{\mu\nu}\sin(\beta-\alpha)$	$i\frac{g^2}{2}g_{\mu\nu}\cos\alpha$	$i\frac{g^2v_X}{2}g_{\mu\nu}\cdot 2\left[T(T+1)-\frac{Y^2}{4}\right]$

- **Enhanced** hVV couplings require a scalar multiplet that:
 - Has isospin ≥ 1.
 - Has a non-negligible vev.
 - Mixes with the observed Higgs h.



Why extend beyond scalar doublets?

Enhanced Higgs couplings could hide new physics.

 If all of the h couplings are enhanced, they may compensate for new physics in the Higgs branching ratios.

Rate =
$$\frac{\sigma_{\rm SM} \, \Gamma_{\rm SM}}{\Gamma_{\rm SM}^{\rm tot}} \rightarrow \frac{\kappa^2 \, \sigma_{\rm SM} \, \kappa^2 \, \Gamma_{\rm SM}}{\kappa^2 \, \Gamma_{\rm SM}^{\rm tot} + \Gamma_{\rm new}}$$
 where $\kappa = \frac{g_{\rm BSM}}{g_{\rm SM}}$

Rates measured at the LHC will be identical to SM predictions if

$$\kappa^2 = \frac{1}{1 - BR_{\text{new}}}$$

- Constraints on Γ_{tot} or κ from off-shell gg \rightarrow h* \rightarrow ZZ assume no new resonances in the s-channel (model-dependent assumption).
- Studies of concrete models are needed to provide benchmarks.

How big can scalar multiplets be?

Consider an electroweak scalar multiplet of size n and hypercharge Y.

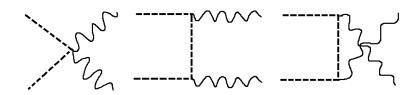
$$X = (\chi_n, ..., \chi_2, \chi_1)^T \qquad \text{(complex)}$$

$$\xi_n = (\xi^Q, ..., \xi^0, ..., \xi^{-Q})^T$$
 (real)

- Tree-level unitarity requires that the partial-wave a_0 satisfy $|Re(a_0)| < 1/2$.
- Applying this constraint to the eigenvalues of the matrix of coupledchannel 2 → 2 electroweak scattering processes can constrain n and Y.

$$n \leq \left\{ \begin{array}{l} 8 \\ 9 \end{array} \right. \Rightarrow T \leq \left\{ \begin{array}{l} \frac{7}{2} & \text{for a complex multiplet} \\ 4 & \text{for a real multiplet} \end{array} \right. \quad |Y| \leq \frac{19.8}{n^{1/4}}$$

[Hally, Logan and Pilkington, 1202.5073]



Difficulties with scalar multiplets

 Higgs extensions with multiplets larger than doublets can result in large contributions to the ρ-parameter.

$$\rho = \frac{M_W^2}{M_Z^2 \cos \theta_W} = \frac{\sum_k 2 v_k^2 \left[T_k (T_k + 1) - Y_k^2 / 4 \right]}{\sum_k Y_k^2 v_k^2}$$

where
$$Q = T^3 + Y/2$$
 and $\langle \phi_k^0 \rangle = v_k/\sqrt{2} \ (v_k)$.

- ullet From global fits $ho=1.00040\pm0.00024$. <code>[PDG 2014]</code>
- How can we avoid large contributions?
 - $\rho = 1 \ automatically \ for \ SM \ and \ septet \ with \ Y = 4.$ Kanemura, Kikuchi, Yagyu, 1301.7303; Alvarado, Lehman, Ostdiek; 1404.3208]
 - Require that vevs be zero. [Earl, Hartling, Logan, Pilkington, 1303.1244, 1311.3656]
 - Require that vevs be very small (ex. Higgs Triplet). [Schechter & Valle, PRD 22, 2227 ('80); Cheng & Li, PRD 22, 2860 ('80)]
 - Balance contributions to charged and neutral weak currents using multiple multiplets (eg. Georgi-Machacek). [Georgi & Machacek, NPB262, 463 (1985)]

[Hisano & Tsumura, 1301.6455;

The Georgi-Machacek Model

The Georgi-Machacek scalar sector contains a doublet and two triplets

$$\Phi = \begin{pmatrix} \phi^{0*} & \phi^{+} \\ -\phi^{+*} & \phi^{0} \end{pmatrix} \qquad X = \begin{pmatrix} \chi^{0*} & \xi^{+} & \chi^{++} \\ -\chi^{+*} & \xi^{0} & \chi^{+} \\ \chi^{++*} & -\xi^{+*} & \chi^{0} \end{pmatrix}$$

with $SU(2)_L \times SU(2)_R$ symmetry and where $s^{Q^*} = (-1)^Q s^{-Q}$.

The ρ-parameter will be 1 if the vevs of both triplets are equal,

$$\rho = \frac{v_{\phi}^2 + 4v_{\xi}^2 + 4v_{\chi}^2}{v_{\phi}^2 + 8v_{\chi}^2} = 1 \text{ if } v_{\chi} = v_{\xi}$$

- Gauging hypercharge breaks custodial SU(2), leading to divergent radiative corrections to ρ at 1-loop. [Gunion, Vega & Wudka, PRD43, 2322 (1991)]
- Require that $v_\phi^2+8v_\chi^2=v^2=(246\,{
 m GeV})^2$, where $\langle\Phi
 angle=rac{v_\phi}{\sqrt{2}}$ and $\langle X
 angle=v_\chi$.

[Georgi & Machacek, NPB262, 463 (1985), Chanowitz & Golden, PLB165, 105 (1985)]

The Georgi-Machacek Model

Scalar mixing yields a physical fiveplet, triplet, and two singlets:

$$\Phi = \begin{pmatrix} \phi^{0*} & \phi^{+} \\ -\phi^{+*} & \phi^{0} \end{pmatrix} \qquad X = \begin{pmatrix} \chi^{0*} & \xi^{+} & \chi^{++} \\ -\chi^{+*} & \xi^{0} & \chi^{+} \\ \chi^{++*} & -\xi^{+*} & \chi^{0} \end{pmatrix} \longrightarrow \begin{pmatrix} H_{5}^{++} \\ H_{5}^{+} \\ H_{5}^{0} \\ H_{5}^{-} \\ H_{5}^{--} \end{pmatrix}, \begin{pmatrix} H_{3}^{+} \\ H_{3}^{0} \\ H_{3}^{-} \end{pmatrix}, H, h$$

- Generally h is assumed to the observed 125 GeV SM-like scalar boson.
- Scalars within each multiplet have identical masses: m₅, m₃, m_H, and m_h.
- The h, H, and H₃ scalars are mixtures of doublet φ and triplet χ , ξ states.
 - Mixing angle α controls how much h comes from the triplets.
 - Ratio tanθ_H = $2\sqrt{2} v_{\chi}/v_{\phi}$ controls how much H₃ comes from the triplets.
- H_5 states are composed of triplet χ , ξ states.

 H_5 is vector-philic (H_5VV but no $H_5f\bar{f}$) and H_3 is fermion-philic ($H_3f\bar{f}$ but no H_3VV).

The Decoupling Limit

The most general custodial-SU(2)-symmetric scalar potential is

$$V(\Phi, X) = \frac{\mu_2^2}{2} \text{Tr}(\Phi^{\dagger}\Phi) + \frac{\mu_3^2}{2} \text{Tr}(X^{\dagger}X) + \lambda_1 [\text{Tr}(\Phi^{\dagger}\Phi)]^2 + \lambda_2 \text{Tr}(\Phi^{\dagger}\Phi) \text{Tr}(X^{\dagger}X)$$
$$+ \lambda_3 \text{Tr}(X^{\dagger}XX^{\dagger}X) + \lambda_4 [\text{Tr}(X^{\dagger}X)]^2 - \lambda_5 \text{Tr}(\Phi^{\dagger}\tau^a \Phi \tau^b) \text{Tr}(X^{\dagger}t^a X t^b)$$
$$- M_1 \text{Tr}(\Phi^{\dagger}\tau^a \Phi \tau^b) (UXU^{\dagger})_{ab} - M_2 \text{Tr}(X^{\dagger}t^a X t^b) (UXU^{\dagger})_{ab}$$

[Aoki & Kanemura, 0712.4053; Chiang & Yagyu, 1211.2658; Chiang, Kuo & Yagyu, 1307.7526]

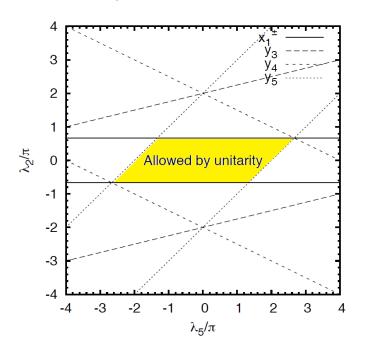
- The dimension-3 terms (M_1, M_2) are necessary for the model to decouple:
 - Masses are unbounded (without M_1 , M_2 terms M_{new} < 700 GeV).
 - Masses become degenerate as M_{new} becomes large.
 - Couplings all become SM-like as v_{x} and α approach 0.

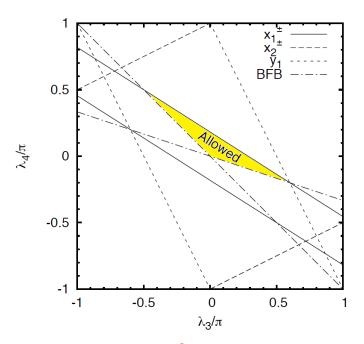
Coupling	Decoupling	M _{1,2} ~ v _{SM}	M _{1,2} ~ M _{new}	2HDM
hVV	$M_1^2 v^2 / M_{new}^4$	v^4/M_{new}^4	v^2/M_{new}^2	v^4/M_{new}^4
hff	ı , new			v^2/M_{new}^2

[Hartling, Kumar & Logan, 1404.2640; Gunion & Haber, PRD67 075019 (2003)]

Theoretical Constraints

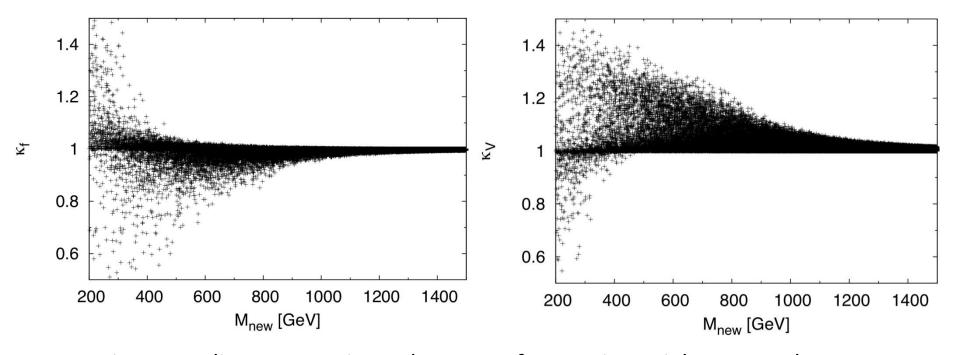
- **Perturbative unitarity** requires that the tree-level partial-wave a_0 from 2 \rightarrow 2 scalar scattering satisfy $|\text{Re}(a_0)| < 1/2$. [Aoki & Kanemura, 0712.4053]
- Scalar potential must be bounded from below.
- Avoiding alternative minima in the scalar potential: ensure that the global minimum preserves custodial SU(2).





[Hartling, Kumar & Logan, 1404.2640]

Theoretical Constraints



Higgs couplings as a ratio to the SM. Left: Fermion. Right: Vector boson.

[Hartling, Kumar & Logan, 1404.2640]

- **Decoupling**: coupling ratios to SM approach 1 as the mass scale increases.
- Enhancement: M_{new} < 500 GeV for all couplings to be enhanced.

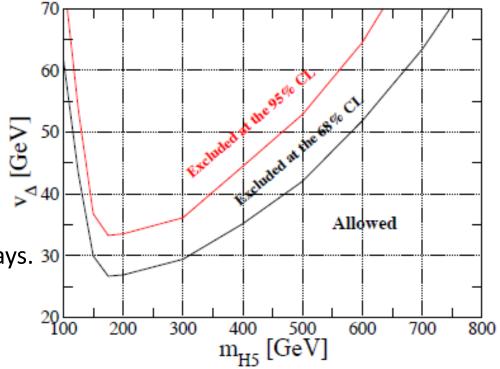
Direct detection constraints

LEP results:

Lower mass bound on a doubly-charged scalar:
 $M_{H \pm \pm} \gtrsim 43 \text{ GeV}$

[Kanemura, Yagyu & Yokoya, 1305.2383]

- Collider searches: applicability of bounds depend on preferred decays. 30
 - e.g. $M_{H\pm\pm} \gtrsim 400$ GeV if $H^{\pm\pm}$ decays dominantly to $I^{\pm}I^{\pm}$.



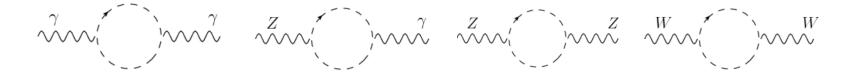
Bounds from like-sign WWjj

[Chiang, Kanemura & Yagyu, 1407.5053]

- The like-sign W[±]W[±]jj cross section measurement from ATLAS has been used to place limits on VBF H^{±±} → W[±]W[±].
- Constrains the $v\chi$ -m5 plane.

Constraints from S, T, U

 The Peskin-Takeuchi (or oblique) parameters S, T, U are defined as linear combinations of the vector boson self-energies.



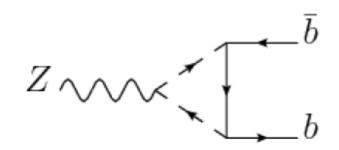
- Global fits yield a correlated bound on S and T (assuming U=0):
 - S = 0.06 \pm 0.09, T = 0.10 \pm 0.07 with ρ = +0.91. [Baak et al (Gfitter), 1407.3792]
- T is divergent at 1-loop in the GM due to the gauging of hypercharge.
 - A counter-term is needed to calculate T. [Gunion, Vega & Wudka, PRD43, 2322 (1991); Englert, Re & Spannowski, 1302.6505]
- Calculate S and marginalize over T to obtain a conservative bound.

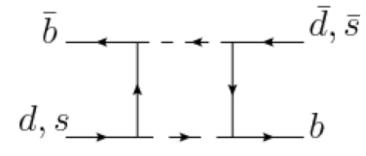
[Chiang, Kuo & Yagyu, 1307.7526; Hartling, Kumar & Logan, 1410.5538]

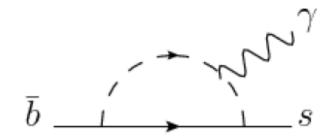
All states participate → constraint affects all free parameters.

Non-oblique and B-physics constraints

- Non-oblique and B-physics processes: GM scalars contribute at 1-loop to
 - R_b , from $Z \rightarrow b\bar{b}$ (LEP)
 - B_s meson mixing (HFAG)
 - $-B_s \rightarrow \mu^+\mu^-$ (CMS, LHCb)
 - b \rightarrow sy (HFAG)
- Constrain the v_x-M₃ plane.
- GM contributions are the same as those in the Type-I 2HDM.
 - Same fermion coupling structure.
 - H₃⁺H₃⁻Z couplings are identical (SU(2)_c).
- LO Type-I 2HDM formulas apply with the replacements $\cot_{\beta} \rightarrow \tan \theta_{H}$ and $M_{H+} \rightarrow M_{3}$.







Non-oblique and B-physics constraints

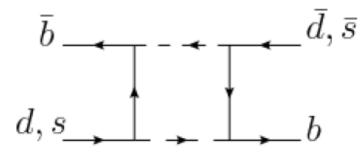
- Non-oblique and B-physics processes: GM scalars contribute at 1-loop to
 - R_b , from $Z \rightarrow b\bar{b}$ (LEP)
 - B_s meson mixing (HFAG)
 - B_s $\rightarrow \mu^{+}\mu^{-}$ (CMS, LHCb)
 - b \rightarrow sγ (HFAG)
- Constrain the v_x - M_3 plane.
- GM contributions are the same as those in the Type-I 2HDM.
 - Same fermion coupling structure.
 - H₃⁺H₃⁻Z couplings are identical (SU(2)_c).
- LO Type-I 2HDM formulas apply with the replacements $\cot_{\beta} \rightarrow \tan \theta_{H}$ and $M_{H+} \rightarrow M_{3}$.

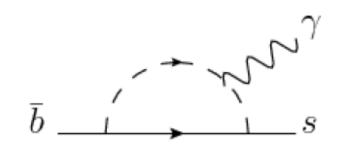
[Logan & Haber, hep-ph/9909335; Grant, hep-ph/9410267; Chiang & Yagyu, 1211.2658]

[Mahmoudi & Stal, 0907.1791]

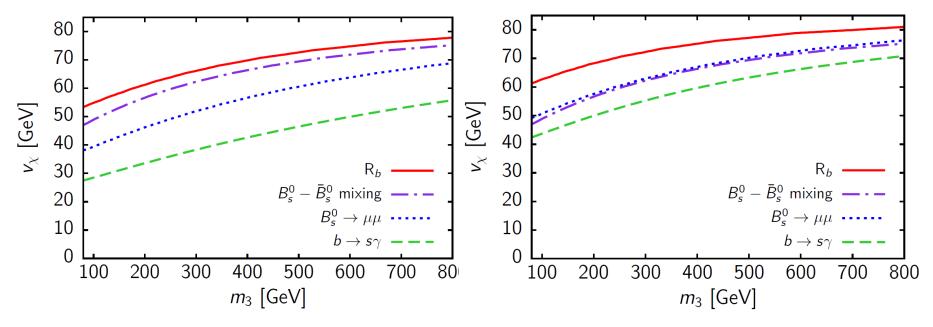
[Li, Lu & Pich, 1404.5865]

[Barger, Hewett & Phillips, PRD41, 3421 (1990); Mahmoudi, SuperIso v3.3]





Indirect Z-pole and B-physics constraints

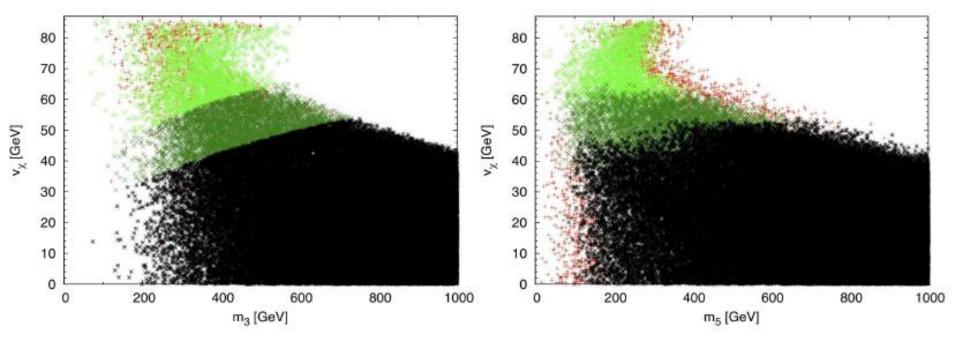


Left: 2σ bound from experiment. Right: 2σ worse than SM prediction.

- Strongest bound is from b → sγ.
 - Implemented in numerical scan using SuperIso. [Mahmoudi, 0710.2067]

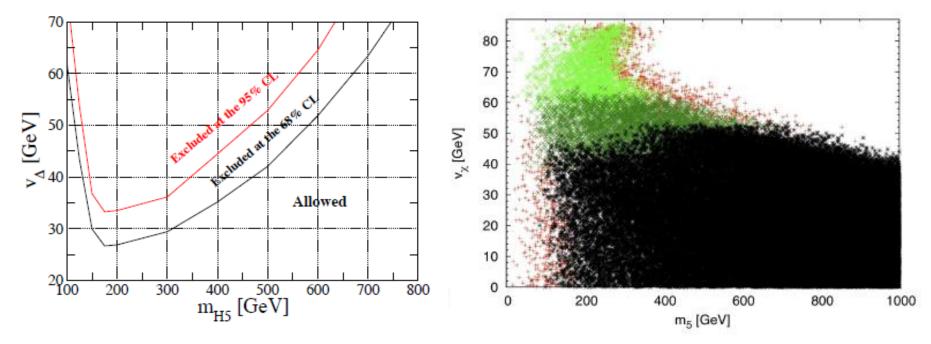
BR(B
$$\rightarrow$$
 X_s γ)_{SM} = (3.11 ± 0.23) x 10⁻⁴ (SuperIso)

BR(B
$$\rightarrow$$
 X_s γ)_{exp} = (3.55 ± 0.24 ± 0.09) x 10⁻⁴ (HFAG)



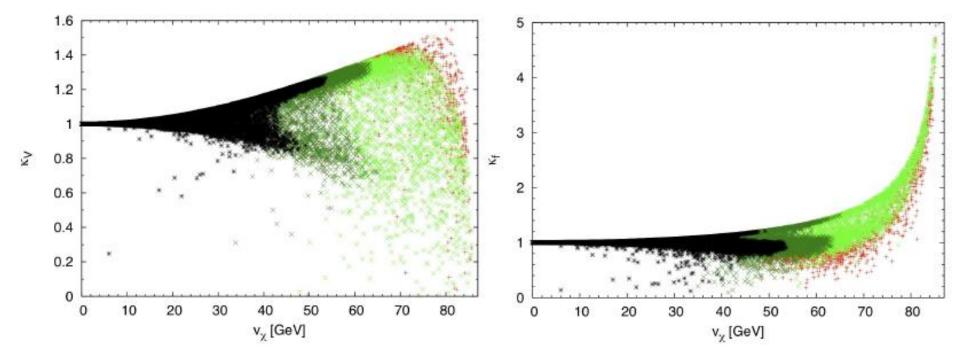
Red: eliminated by S. Green: eliminated by b \rightarrow sy. Black: allowed.

- Tight b \rightarrow sy experimental bound constrains v_{χ} < 54 GeV.
- Loose SM bound constrains v_x < 65 GeV.
- Complements like-sign WWjj bound.



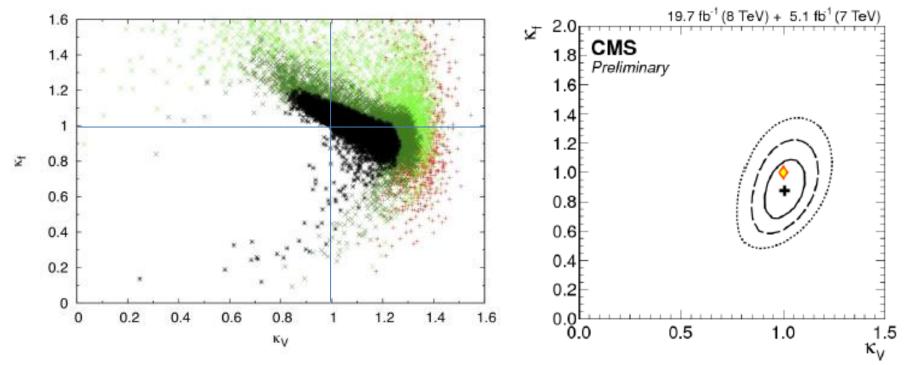
Red: eliminated by S. Green: eliminated by b \rightarrow sy. Black: allowed.

- Tight b \rightarrow sy experimental bound constrains v_{χ} < 54 GeV.
- Loose SM bound constrains $v_x < 65$ GeV.
- Complements like-sign WWjj bound.



Red: eliminated by S. Green: eliminated by b \rightarrow sy. Black: allowed.

- Loose b \rightarrow sy experimental bound constrains $\kappa_v < 1.36$ and $\kappa_f < 1.49$.
- The like-sign WWjj bound will strengthen the constraint.



Red: eliminated by S. Green: eliminated by b \rightarrow sy. Black: allowed.

- GM can accommodate simultaneous enhancement of κ_v and κ_f .
- Simultaneous enhancement requires $\kappa_{\rm v} \approx \kappa_{\rm f} < 1.18$ from the loose constraint (1.09 for tight).

Summary and outlook

Summary

- Beyond doublets → interesting phenomenology and benchmarks!
- The Georgi-Machacek model can enhance Higgs couplings to VV.

Outlook

- Still a lot of work to be done beyond doublets!
- Georgi-Machacek:
 - Calculator and FeynRules file under development.
 - Constraints from direct searches.
 - Collider studies of effect of enhanced couplings.
- Other models: septet, generalized GM, etc.

Extra Slides

Scalar potential

$$V(\Phi, X) = \frac{\mu_2^2}{2} \text{Tr}(\Phi^{\dagger}\Phi) + \frac{\mu_3^2}{2} \text{Tr}(X^{\dagger}X) + \lambda_1 [\text{Tr}(\Phi^{\dagger}\Phi)]^2 + \lambda_2 \text{Tr}(\Phi^{\dagger}\Phi) \text{Tr}(X^{\dagger}X)$$

$$+ \lambda_3 \text{Tr}(X^{\dagger}XX^{\dagger}X) + \lambda_4 [\text{Tr}(X^{\dagger}X)]^2 - \lambda_5 \text{Tr}(\Phi^{\dagger}\tau^a\Phi\tau^b) \text{Tr}(X^{\dagger}t^aXt^b)$$

$$- M_1 \text{Tr}(\Phi^{\dagger}\tau^a\Phi\tau^b) (UXU^{\dagger})_{ab} - M_2 \text{Tr}(X^{\dagger}t^aXt^b) (UXU^{\dagger})_{ab}$$

Here $\tau^a = \sigma^a/2$ with σ^a being the Pauli matrices, and

$$t^{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad t^{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad t^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

The matrix U rotates X into the Cartesian basis, and is given by

$$U = \begin{pmatrix} -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{i}{\sqrt{2}} & 0 & -\frac{i}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix}.$$

Scalar potential

$$V(\Phi, X) = \frac{\mu_2^2}{2} \text{Tr}(\Phi^{\dagger}\Phi) + \frac{\mu_3^2}{2} \text{Tr}(X^{\dagger}X) + \lambda_1 [\text{Tr}(\Phi^{\dagger}\Phi)]^2 + \lambda_2 \text{Tr}(\Phi^{\dagger}\Phi) \text{Tr}(X^{\dagger}X)$$

$$+ \lambda_3 \text{Tr}(X^{\dagger}XX^{\dagger}X) + \lambda_4 [\text{Tr}(X^{\dagger}X)]^2 - \lambda_5 \text{Tr}(\Phi^{\dagger}\tau^a\Phi\tau^b) \text{Tr}(X^{\dagger}t^aXt^b)$$

$$- M_1 \text{Tr}(\Phi^{\dagger}\tau^a\Phi\tau^b) (UXU^{\dagger})_{ab} - M_2 \text{Tr}(X^{\dagger}t^aXt^b) (UXU^{\dagger})_{ab}$$

Constraint	Sets parameter	
v = 246 GeV	v_ϕ	
$\partial V/\partial v_{\chi}=0$	v_χ	
$\partial V/\partial v_{\phi}=0$	μ_2	
$m_h=125~{ m GeV}$	λ_1	

Free parameters: λ_2 , λ_3 , λ_4 , λ_5 , M_1 , M_2 and mass scale μ_3 .

Particle mixing

Goldstone boson, triplet and fiveplet states $(c_H \equiv \cos \theta_H = \frac{v_\phi}{v})$:

$$G^{+} = c_{H}\phi^{+} + s_{H}\frac{(\chi^{+} + \xi^{+})}{\sqrt{2}}$$

$$H_{5}^{++} = \chi^{++}$$

$$G^{0} = c_{H}\phi^{0,i} + s_{H}\chi^{0,i}$$

$$H_{3}^{+} = -s_{H}\phi^{+} + c_{H}\frac{(\chi^{+} + \xi^{+})}{\sqrt{2}}$$

$$H_{3}^{0} = -s_{H}\phi^{0,i} + c_{H}\chi^{0,i}$$

$$H_{5}^{0} = \sqrt{\frac{2}{3}}\xi^{0} - \sqrt{\frac{1}{3}}\chi^{0,r}$$

The two custodial SU(2) singlets:

$$H_1^0 = \phi^{0,r}$$
 $H_1^{0\prime} = \sqrt{\frac{1}{3}} \xi^0 + \sqrt{\frac{2}{3}} \chi^{0,r}.$

These states mix by an angle α to form the singlets h and H:

$$h = \cos \alpha \, H_1^0 - \sin \alpha \, H_1^{0\prime}$$
 $H = \sin \alpha \, H_1^0 + \cos \alpha \, H_1^{0\prime}$

Theoretical constraints

Requiring unitarity and V bounded-from-below constrains λ_i :

$$\lambda_{1} \in \left(0, \frac{1}{3}\pi\right) \simeq (0, 1.05) \qquad \text{(Unitarity, BFB)}$$

$$\lambda_{2} \in \left(-\frac{2}{3}\pi, \frac{2}{3}\pi\right) \simeq (-2.09, 2.09) \qquad \text{(Unitarity)}$$

$$\lambda_{3} \in \left(-\frac{1}{2}\pi, \frac{3}{5}\pi\right) \simeq (-1.57, 1.88) \qquad \text{(Unitarity, BFB)}$$

$$\lambda_{4} \in \left(-\frac{1}{5}\pi, \frac{1}{2}\pi\right) \simeq (-0.628, 1.57) \qquad \text{(Unitarity, BFB)}$$

$$\lambda_{5} \in \left(-\frac{8}{3}\pi, \frac{8}{3}\pi\right) \simeq (-8.38, 8.38) \qquad \text{(Unitarity, BFB)}$$

$$|M_{1}|/\sqrt{\mu_{3}^{2}} \lesssim 3.3 \qquad \text{(Unitarity)}$$

$$|M_{2}|/\sqrt{\mu_{3}^{2}} \lesssim 1.2 \qquad (8 v_{\chi}^{2} \leq v^{2})$$

Desired vacuum is a global minimum if λ_3 , λ_5 , M_1 and M_2 are > 0. Otherwise must be checked numerically.

Decoupling

 M_i can scale with μ_3^n , but unitarity bound on λ_1 constrains $n \leq 1$.

$$\lambda_1 \approx \frac{1}{8} \left[\frac{m_h^2}{v^2} + \frac{3}{4} \frac{M_1^2}{\mu_3^2} \left(1 - 3(2\lambda_2 - \lambda_5) \frac{v^2}{\mu_3^2} + \frac{3M_1 M_2 v^2}{\mu_3^4} + \frac{5m_h^2}{3\mu_3^2} \right) \right]$$
 implies $|M_1|/\sqrt{\mu_3^2} \lesssim 3.3$

Sensible minimum of the potential implies $|M_2|/\sqrt{\mu_3^2} \lesssim 1.2$.

Georgi-Machacek couplings in the decoupling limit

$$\kappa_V = \cos \alpha \frac{v_\phi}{v} - \frac{8}{\sqrt{3}} \sin \alpha \frac{v_\chi}{v} \simeq 1 + \frac{3}{8} \frac{M_1^2 v^2}{\mu_3^4} \qquad \kappa_f = \cos \alpha \frac{v}{v_\phi} \simeq 1 - \frac{1}{8} \frac{M_1^2 v^2}{\mu_3^4}$$

2HDM couplings in the decoupling limit

$$\kappa_V^{\mathrm{2HDM}} \simeq 1 - \frac{\hat{\lambda}^2 v^4}{2 \, m_A^4},$$

$$\kappa_f^{\mathrm{2HDM}} \simeq 1 + \frac{\hat{\lambda} v^2}{m_A^2} \times \begin{cases} \cot \beta & \text{for up type fermions} \\ -\tan \beta & \text{for down type fermions} \end{cases}$$