LFV Higgs and Other Rare Decays

$$
(h \rightarrow 4 \ell)
$$

Roni Harnik,
Fermilab

$$
\text { KEK_PH } 2014
$$

* RH, Kopp, Zupan 1209.1397
* Chen, RH, Vega-Morales 1404.1336 and work in progress.
* RH, Martin, Okui, Primulando, Yu 1308.1094

Highs - a new toy!

* We have discovered a Higgs! New Particle!
* We're excited like kids that got a new toy.

Highs - a new toy!

* We have discovered a Higgs! New Particle!
* We're excited like kids that got a new toy.

Highs - a new toy!

* We have discovered a Higgs! New particle!
* We're excited like kids that got a new toy.

Outline:

* Higgs Coupling to Gauge Bosons:
$0 h \rightarrow 4 \ell$. (not $\left.h \rightarrow Z Z^{*}!\right)$
- Can it probe hor? hr?
* Higgs Couplings to Fermions: Flavor!
- Highs FV Theory
- Limits
- Colin's talk $(h \rightarrow \tau \mu)$.

Highs Couplings to Gauge Bosons:

Opportunities in $h \rightarrow 4 \ell$.
$h \rightarrow 4 \ell$

* The decay $h \rightarrow 4 \ell$ was vitally important in discovering the Higgs. Determining its mass.

- Very clean.
- Many things to measure. - What else can it do for us?

$$
h \rightarrow 4 \ell
$$

* The search was optimized for discovery via $Z Z^{*}$.
* $h \rightarrow 4 \ell$ is not only ZZ*!
* I'm advocating: include $\gamma \gamma$ and Z_{γ}.

Signal and Background

Our mindset in 2012:

$$
\begin{aligned}
& \mathcal{L}=\frac{h}{4 v}\left(2 m_{2}^{2} A_{1}^{z \tau} Z_{\mu} Z^{\mu} \quad\right. \text { Signal } \\
&+A_{2}^{z \tau} Z_{\mu \nu} Z^{\mu \nu}+A_{3}^{z \tau} Z_{\mu \nu} \tilde{Z}^{\mu \nu} \\
& \text { too small... }+A_{2}^{\gamma \gamma} F_{\mu \nu} F^{\mu \nu}+A_{3}^{\gamma \gamma} F_{\mu \nu} \tilde{F}^{\mu \nu} \\
&\left.+2 A_{2}^{z \gamma} Z_{\mu \nu} F^{\mu \nu}+2 A_{3}^{z \gamma} Z_{\mu \nu} \tilde{F}^{\mu \nu}\right)
\end{aligned}
$$

Signal and Background
Our mindset in 2012 .
2014 and beyond:

$$
\begin{aligned}
& \mathcal{L}=\frac{h}{4 v}\left(2 m_{2}^{2} A_{1}^{z \tau} Z_{\mu} Z^{\mu} \quad\right. \text { Signal } \\
&+A_{2}^{z \tau} Z_{\mu \nu} Z^{\mu \nu}+A_{3}^{z \tau} Z_{\mu \nu} \tilde{Z}^{\mu \nu} \\
& \text { too small... }+A_{2}^{\gamma \gamma} F_{\mu \nu} F^{\mu \nu}+A_{3}^{\gamma \gamma} F_{\mu \nu} \tilde{F}^{\mu \nu} \\
&\left.+2 A_{2}^{z \gamma} Z_{\mu \nu} F^{\mu \nu}+2 A_{3}^{z \gamma} Z_{\mu \nu} \tilde{F}^{\mu \nu}\right)
\end{aligned}
$$

Signal and BackGround
Our mindset in 2012. 2014 and beyond:

$$
\begin{aligned}
& \mathcal{J}=\frac{h}{4 v}\left(2 m_{2}^{2} A_{1}^{z \tau} Z_{\mu} Z^{\mu} \quad \text { Signal }{ }^{2}\right. \text { background! } \\
&+A_{2}^{z z} Z_{\mu \nu} Z^{\mu \nu}+A_{3}^{z z} Z_{\mu \nu} \tilde{Z}^{\mu \nu} \\
& \text { too small... }+A_{2}^{\gamma \gamma} F_{\mu \nu} F^{\mu \nu}+A_{3}^{\gamma \gamma} F_{\mu \nu} \tilde{F}^{\mu \nu} \\
&\left.+2 A_{2}^{z \gamma} Z_{\mu \nu} F^{\mu \nu}+2 A_{3}^{z \gamma} Z_{\mu \nu} \tilde{F}^{\mu \nu}\right)
\end{aligned}
$$

Signal and BackGround
Our mindset in 2012: 2014 and beyond:

$$
\begin{aligned}
& \mathcal{J}=\frac{h}{4 v}\left(2 m_{2}^{2} A_{1}^{2 \tau} Z_{\mu} Z^{\mu} \quad \text { Signal }{ }^{\text {Background! }}\right. \\
& +A_{2}^{z \tau} Z_{\mu \nu} Z^{\mu \nu}+A_{3}^{z \tau} Z_{\mu \nu} Z^{\mu \nu} \\
& \text { toosmal!... } \\
& \text { Signal! }+A_{2}^{\gamma \gamma} F_{\mu \nu} F^{\mu \nu}+A_{3}^{\gamma \gamma} F_{\mu \nu} \tilde{F}^{\mu \nu} \\
& \left.\quad+2 A_{2}^{2 \gamma} Z_{\mu \nu} F^{\mu \nu}+2 A_{3}^{2 \gamma} Z_{\mu \nu} \tilde{F}^{\mu \nu}\right)
\end{aligned}
$$

Signal and Background
Our mindset in 2012. 2014 and beyond:

$$
\begin{aligned}
& \mathscr{L}=\frac{h}{4 v}\left(2 m_{2}^{2} A_{1}^{2 \tau} Z_{\mu} Z^{\mu} \quad \begin{array}{c}
\text { Background! } \\
\text { Signal }
\end{array}\right. \\
& +A_{2}^{2 \tau} Z_{\mu \nu} Z^{\mu \nu}+A_{3}^{2 \tau} Z_{\mu \nu} \tilde{Z}^{\mu \nu} \\
& \text { too small... }+A^{y} \\
& \text { Signal! } \\
& \text { Intuition: } \\
& \text { We expect to be most sensitive } \\
& \text { to the signal that is most } \\
& \text { different from BG. }
\end{aligned}
$$

Motivation

* Why look for $Z \gamma$ and $\gamma \gamma$ in four leptons? Isn't it clear we will loose to direct searches?
- Yes, but interference = Sensitivity to CPV and signs.
- Many observables = discriminating power.
- Interference gives $4 l$ a head start. e.g., $A_{2}^{Z \gamma}$'s effect the rate like

Zr: $\quad A_{2} \times A_{2} \sim$ small ${ }^{2}$
4e: $\quad A_{1} \times A_{2} \sim b_{i g}{ }^{*}$ small

* A simple procedure: a.t.a. method $\#_{7}$ in tie's tall from monday.
- Calculate the fully differential cross section analytically*.
- A big function of $\left(A_{2}^{2 z}, A_{3}^{2 z}, A_{2}^{z_{\gamma}}, A_{3}^{z_{\gamma}}, A_{2}^{\gamma \gamma}, A_{3}^{\gamma \gamma}\right)$ \& phase space.
- Fit to the data. Extract A 's directly.
* Keeps all operators simultaneously. No hypothesis testing, etc.
*Done in a heroic effort by youngsters Chen and Vega-Morales.

Results

Results

Results

Results

Part I: Summary

* $h \rightarrow 4 \ell$ is powerful!
* Can do much more than discover the Higgs!
* Probe CPV and sign of hr.
* Ongoing: we are optimizing the $m_{1}-m_{2}$ cuts. Preliminary: $h Z_{\gamma}$ couplings are within reach!

Intermission:

My son, \rightarrow
Testing both flavor and time reversal properties of QFT.

huff Couplings

* SM: the figs is the only source of mass. It defines the fermion mass basis.
\rightarrow Yukawa couplings are flavor diagonal.
* New physics can mean new sources of mass. In the presence of such NP we can have-

$$
\mathcal{L}_{F V}=m_{i} \bar{f}_{i} f_{i}+y_{i j} h \bar{f}_{i} f_{j}
$$

not-diagonal.

Flavor Violating Hicks

* Recipe: CPV/FV Hogs

1. Rip a page from a paper that modifies Hings couplings.
2. Sprinkle flavor indices and phases all over the place.
3. Re-diagonalize mass matrix.

Flavor Violating HigGs

* Recipe: CPV/FV Higgs

1. Rip a page from a paper that modifies Hings couplings.
2. Sprinkle flavor indices and phases all over the place.
3. Re-diagonalize mass matrix.

$$
\begin{gathered}
\mathcal{L}=\lambda H f_{l} f_{R}+\lambda^{\prime} \frac{H^{3}}{\Lambda^{2}} f_{l} f_{R} \\
m_{f}=\left(\lambda+\frac{v^{2}}{\Lambda^{2}} \lambda^{\prime}\right) v \\
y_{f}=\lambda+3 \frac{v^{2}}{\Lambda^{2}} \lambda^{\prime}
\end{gathered}
$$

Flavor Violating Hicks

* Recipe: CPV/FV Higgs

1. Rip a page from a paper that modifies Hings couplings.
2. Sprinkle flavor indices and phases all over the place.
3. Re-diagonalize mass matrix.

$$
\begin{gathered}
\mathcal{L}=\lambda H f_{l} f_{R}+\lambda^{\prime} \frac{H^{3}}{\Lambda^{2}} f_{l} f_{R} \\
m_{f}=\left(\lambda+\frac{v^{2}}{\Lambda^{2}} \lambda^{\prime}\right) v \\
y_{f}=\lambda+3 \frac{v^{2}}{\Lambda^{2}} \lambda^{\prime}
\end{gathered}
$$

$$
y_{f} \neq \frac{m_{f}}{v}
$$

Flavor Violating Higgs

* Recipe: CPV/FV Higgs

1. Rip a page from a paper that modifies Hings couplings.
2. Sprinkle flavor indices and phases all over the place.
3. Re-diagonalize mass matrix.

$$
\begin{gathered}
\mathcal{L}=\lambda_{i j} H f_{l} f_{R}^{j}+\lambda_{i j}^{\prime} H^{\beta} \Lambda^{2} f_{l}^{i} f_{R}^{j} \\
m f=\left(\lambda_{i j}+\frac{v^{2}}{\Lambda^{2}} \lambda_{i j}^{\prime}\right) v \\
y_{f}=\lambda_{i j}+3 \frac{v^{2}}{\Lambda^{2}} \lambda_{i j}^{\prime}
\end{gathered}
$$

$Y_{f} \neq \frac{m_{f}}{V}$ and not diagonal.

Flavor Violating Highs

* Recipe: CPV/FV Higgs

1. Rip a page from a paper that modifies Hings couplings.
2. Sprinkle flavor indices and phases all over the place.
3. Re-diagonalize mass matrix.

$$
\begin{gathered}
\mathcal{L}=\lambda_{i j} H f_{l} f_{R}^{j}+\lambda_{i j}^{\prime} H^{\beta} \Lambda^{2} f_{l}^{i} f_{R}^{j} \\
m_{f}=\left(\lambda_{i j}+\frac{v^{2}}{\Lambda^{2}} \lambda_{i j}^{\prime}\right) v \\
y_{f}=\lambda_{i j}+3 \frac{v^{2}}{\Lambda^{2}} \lambda_{i j}^{\prime}
\end{gathered}
$$

$Y_{f} \neq \frac{m_{f}}{V}$ and not diagonal.
$Y_{i j<}\left(m_{i} m_{j}\right)^{1 / 2}$ is natural.

Leptonic Flavor Violation

$$
\mathcal{L}_{Y} \supset-Y_{e \mu} \bar{e}_{L} \mu_{R} h-Y_{\mu e} \bar{\mu}_{L} e_{R} h-Y_{e \tau} \bar{e}_{L} \tau_{R} h-Y_{\tau e} \bar{\tau}_{L} e_{R} h-Y_{\mu \tau} \bar{\mu}_{L} \tau_{R} h-Y_{\tau \mu} \bar{\tau}_{L} \mu_{R} h+h . c . .
$$

Which experiments constrain the $Y_{i j}$'s?

FV Highs constraints
mu to e gamma \& mu to 3 e (at 1 and 2-oop):

FVHiggs decay:

mu to e conversion (will improve 4 orders of magnitude III):

Highs couplings to $\mu \mathrm{e}$

Outside of LHC reach.

Probing
"natural" models.

Will be dominated by $\mu \mathrm{Ze}$ \& COMET

Higgs couplings to $\mu \tau$

LHC wins!
 (see an update in the next talk!!)

Theorist's lame reinterpretation of $h \rightarrow \tau \tau$ beats $\tau \rightarrow \mu \gamma$!
"natural models" are within reach.

RH, Kopp, Zupan 1209.1397

Highs couplings to ce

* τe is similar to $\tau \mu$, but without CMS bound and...

Higgs couplings to ce

* τ e is similar to $\tau \mu$, but without CMS bound and...

Electron EDM is interesting here!

Flavor and CP Probes:

Leptons	Probe
$\mu-e$	muons $_{v}$
$\tau-e$	eEDM $_{v}$
$\tau-\mu$	LHC $_{v}$

d-quarks	Probe
$s-d$	$\mathrm{~K}_{-} K_{v}$
$b-d$	$\mathrm{~B}_{v}-{ }_{v}$
$b-s$	$\mathrm{~B}_{s}-\mathrm{B}_{v}$

u-quarks	Probe
$c-u$	D-D
$t-u$	nEDM*
$t-c$	LHC / D-D

CP violation:

Phase	Probe
e	e-EDM
u, d	nEDM
γ	eEDM

Phase	Probe
t	EDMs
τ	Libs $/$ H. Higs actory W / Z

Multiple probes!
Many experiments!

Almost all channels are sensitive at well motivated levels!

Conclusion

* The Hliggs is a new toy! Lets Explore it!
* Flavor conservation cant be taken for granted. should be tested without theoretical prejudice.
* $h \rightarrow \tau \mu$ is a promising opportunity for LHC.
* $h \rightarrow 4 \ell$ is more exciting than an iPhone!

Conclusion

* The Hliggs is a new toy! Lets Explore it!
* Flavor conservation cant be taken for granted. should be tested without theoretical prejudice.
* $h \rightarrow \tau \mu$ is a promising opportunity for LHC.
* $h \rightarrow 4 \ell$ is more exciting than an iPhone!

Deleted Scenes

Shapes

Signal 2121'

Signal 41

Signal 41

Shapes

Signal 2121'

Signal 2121'

Signal 41

Signal $4 \mid$

Shapes

Signal 2121'

Signal 2121'

Signal 4I

Signal 41

Shapes

Signal 2121'

Signal 2121'

Signal 4I

Signal 4I

Shapes

Signal 2121'

Signal 2121'
$A_{2}^{A A}$

Signal 4I

Signal 41
"Wrong Pair"

* These cuts were optimized to discover the Higgs. Motivated by ZZ*.
* But accidentally, they have good efficiency for $\gamma^{*} \gamma^{*}$ in the $4 e$ and 4μ channel! :-)

"Wrong Pair"
* These cuts were optimized to discover the Higgs. Motivated by ZZ*.
* But accidentally, they have good efficiency for $\gamma^{*} \gamma^{*}$ in the $4 e$ and 4μ channel! :-)

"Wrong Pair"
* These cuts were optimized to discover the Higgs. Motivated by ZZ*.
* But accidentally, they have good efficiency for $\gamma^{*} \gamma^{*}$ in the $4 e$ and 4μ channel! :-)

"Wrong Pair"
* These cuts were optimized to discover the Higgs. Motivated by ZZ*.
* But accidentally, they have good efficiency for $\gamma^{*} \gamma^{*}$ in the $4 e$ and 4μ channel! :-)

For completeness:

* Meson mixing's powerful:

Technique	Coupling	Constraint	$\underline{m_{i} M_{j} / v^{2}}$
D^{0} oscillations [48]	$\begin{gathered} \left\|Y_{u c}\right\|^{2},\left\|Y_{c u}\right\|^{2} \\ \left\|Y_{u c} Y_{c u}\right\| \end{gathered}$	$\begin{aligned} & <5.0 \times 10^{-9} \\ & <7.5 \times 10^{-10} \end{aligned}$	5×10^{-8}
B_{d}^{0} oscillations [48]	$\begin{gathered} \left\|Y_{d b}\right\|^{2},\left\|Y_{b d}\right\|^{2} \\ \left\|Y_{d b} Y_{b d}\right\| \end{gathered}$	$\begin{aligned} & <2.3 \times 10^{-8} \\ & <3.3 \times 10^{-9} \end{aligned}$	3×10^{-7}
B_{s}^{0} oscillations [48]	$\begin{gathered} \left\|Y_{s b}\right\|^{2},\left\|Y_{b s}\right\|^{2} \\ \left\|Y_{s b} Y_{b s}\right\| \end{gathered}$	$\begin{aligned} & <1.8 \times 10^{-6} \\ & <2.5 \times 10^{-7} \end{aligned}$	7×10^{-6}
K^{0} oscillations [48]	$\operatorname{Re}\left(Y_{d s}^{2}\right), \operatorname{Re}\left(Y_{s d}^{2}\right)$	$[-5.9 \ldots 5.6] \times 10^{-10}$	8×10^{-9}
	$\operatorname{Im}\left(Y_{d s}^{2}\right), \operatorname{Im}\left(Y_{s d}^{2}\right)$	$[-2.9 \ldots 1.6] \times 10^{-12}$	
	$\operatorname{Re}\left(Y_{d s}^{*} Y_{s d}\right)$	$[-5.6 \ldots 5.6] \times 10^{-11}$	
	$\operatorname{Im}\left(Y_{d s}^{*} Y_{s d}\right)$	$[-1.4 \ldots 2.8] \times 10^{-13}$	
"Natural" models are constrained!			

FV Couplings with top

* A variety of techniques:

FV Couplings with top

* A variety of techniques:

FV Couplings with top

* A variety of techniques:

Highs couplings to $\tau \mu$

LDC $h \rightarrow \tau \mu$ gives dominant bound.

CHS: A 2.50 excess.
right around $y_{\tau \mu} \sim\left(y_{\tau} \cdot y_{\mu}\right)^{1 / 2}$

Waiting for ATLAS...

RH, Kopp, Zupan 1209.1397 $\&$ CIS

LV: Measurements

* We already have some searches for our signal:

$$
\begin{aligned}
&=\frac{h}{4 v}\left(2 m_{2}^{2} A_{1}^{2 \tau} Z_{\mu} Z^{\mu}\right. \\
&+A_{2}^{2 \tau} Z_{\mu \nu} Z^{\mu \nu}+A_{3}^{2 \tau} Z_{\mu \nu} \tilde{Z}^{\mu \nu} \\
&+A_{2}^{\gamma \gamma} F_{\mu \nu} F^{\mu \nu}+A_{3}^{\gamma \gamma} F_{\mu \nu} \tilde{F}^{\mu \nu} \\
&\left.+2 A_{2}^{z \gamma} Z_{\mu \nu} F^{\mu \nu}+2 A_{3}^{2 \gamma} Z_{\mu \nu} \tilde{F}^{\mu \nu}\right)
\end{aligned}
$$

LV: Measurements

* We already have some searches for our signal:

$$
\begin{aligned}
& =\frac{h}{4 v}\left(2 m_{2}^{2} A_{1}^{z \tau} Z_{\mu} Z^{\mu}\right. \\
& \\
&
\end{aligned}
$$

LV: Measurements

* We already have some searches for our signal:

$$
=\frac{h}{4 v}\left(2 m_{2}^{2} A_{1}^{2 \tau} Z_{\mu} Z^{\mu}\right.
$$

$$
h \rightarrow 4 \ell:
$$

$$
+A_{3}^{2 \tau} Z_{\mu \nu} \tilde{Z}^{\mu \nu}
$$

scalar vs. pseudoscalar. (Hypothesis test).

Scalar preferred @ So

This is not the way to go forward with this search! (CMS already started this change)

LV: Measurements

* We have some measurements of A^{\prime} s:

$$
\begin{aligned}
&=\frac{h}{4 v}\left(2 m_{2}^{2} A_{1}^{2 \tau} Z_{\mu} Z^{\mu}\right. \\
&+A_{2}^{2 \tau} Z_{\mu \nu} Z^{\mu \nu}+A_{3}^{2 \tau} Z_{\mu \nu} \tilde{Z}^{\mu \nu} \\
&+A_{2}^{\gamma \gamma} F_{\mu \nu} F^{\mu \nu}+A_{3}^{\gamma \gamma} F_{\mu \nu} \tilde{F}^{\mu \nu} \\
&\left.+2 A_{2}^{z \gamma} Z_{\mu \nu} F^{\mu \nu}+2 A_{3}^{2 \gamma} Z_{\mu \nu} \tilde{F}^{\mu \nu}\right)
\end{aligned}
$$

LV: Measurements

* We have some measurements of A^{\prime} s:

$$
\begin{aligned}
& \mathscr{J}=\frac{h}{4 v}\left(2 m_{2}^{2} A_{1} z_{\mu} z^{\mu}\right. \\
&+A_{2} z_{\mu \nu} z^{\gamma \nu}+A_{3} z_{\mu \nu} z^{\mu \nu} \\
&+A_{2}^{\gamma \gamma} F_{\mu \nu} F^{\mu \nu}+A_{3}^{\gamma \gamma} F_{\mu \nu} \tilde{F}^{\mu \nu}
\end{aligned}
$$

LV: Measurements

* We have some measurements of A^{\prime} s:

$$
\begin{array}{r}
\text { If Wigs couples } \quad A_{2} \gg A_{3} \\
\text { to electron - EDM! } \\
\text { McKeen, Pospelov, Ritz }
\end{array}
$$

LHC $h \rightarrow \gamma \gamma$ rate (assuming standard production):

$$
\left|A_{2}^{\gamma \gamma}\right|^{2}+\left|A_{3}^{\gamma \gamma}\right|^{2} \sim S M \text { value }
$$

hVV: Measurements

* The SM-like rate to 4ℓ + "scalar evidence" imply that the figs is SM-like.
* It is worth emphasizing what we do not know:
- Don't know the sign of the hor vertex.
- Don't know its phase w/o assumptions.
- Constraints on $Z \gamma$ and $Z Z$ high-dim operators are very poor, and will remain so for a while.

Can the golden channel shed light on the small dim-5 operators? which ones?

Phase Space

* The relevant phase space for $h \rightarrow 4 \ell$ can be written as:
- two invariant masses of lepton pairs, mT and $m 2$.
- two opening angles.

0 a relative azimuthal angle.

* All other variables are the boost to the Higgs rest frame, and overall rotation.

M_{1} and M_{2}
* For now, we adopt the CMS convention for picking m_{1} and m_{2} :
- Same flavor pairs.
- Always pick mi>mz
- For 4 e and 4μ : pick m_{1} to be closest to the Z mass.
* We also employ CMS-like cuts:
- $p_{T \ell}>20,10,7,7 \mathrm{GeV}$ for lepton p_{T} ordering,
- $\left|\eta_{\ell}\right|<2.4$ for the lepton rapidity,
- $40 \mathrm{GeV} \leq M_{1}$ and $12 \mathrm{GeV} \leq M_{2}$.

Lesson from Shapes

* Not surprisingly: the $\gamma \gamma$ shapes are most different from background (recall: $B G=A_{T}$).
* Z_{γ} is next.
* Interesting pair selection effects in $\gamma \gamma 4 \mathrm{e} / 4 \mu$. There is room for optimization! (more later)

Optimization

Optimization

* The cuts on m_{1} and m_{2} had $Z Z^{*}$ in mind.
* We can relax them! (or pick "wrong pairings" on purpose..)

Signal 4I

Optimization

* The cuts on m_{1} and m_{2} had $Z Z^{*}$ in mind.
* We can relax them!
(or pick "wrong pairings" on purpose..)

Signal 2121'

Signal 4I

CNS $2011 \sqrt{s}=7$ ReV $L_{\mathrm{m}_{10}}=5.3 \mathrm{fb}^{-1}$
Optimization

* Going low in mr and $m 2$ is doable.
* Preliminary results:

o We can reach SM values of hr by the end of run 2!
- We can reach SM values for $Z \gamma$!

Perhaps compete with on-shell $h \rightarrow Z \gamma \ldots$.

* Everything hinges on what happens when we include non-Higgs background.

What about CP violation?

$$
\mathcal{L}_{C P V}=\frac{m_{i}}{v} h \bar{f}_{i}\left(\cos \Delta+i \sin \Delta \gamma_{5}\right) f_{i}
$$

For τ 's, the phase Δ is un-constrained!

How can LHC probe CPV in $h \rightarrow \tau \tau$?
RH, Martin, Okui, Primulando, Mu 1308.1094

Polarizers

* $h \rightarrow$ \rightarrow :

ic final state(helicity basis):

$$
\left(e^{+i \Delta}|++\rangle+e^{-i \Delta}|--\rangle\right)
$$

RH, Martin, Okui, Primulando, Yu 1308.1094

Polarizers

$$
\text { * } h \rightarrow \tau \tau:
$$

it final state(helicity basis):

$$
\left(e^{+i \Delta}|++\rangle+e^{-i \Delta}|--\rangle\right)
$$

Linear polarizers:

$$
|\phi\rangle=e^{+i \phi}|+\rangle+e^{-i \phi}|-\rangle
$$

RH, Martin, Okui, Primulando, Yu 1308.1094

Polarizers

$$
* h \rightarrow \tau \tau:
$$

ic final state(helicity basis):

Counts vs relative polarization angle, ϕ :

$$
\mid\left.(\langle+|+\langle-|)_{1} \otimes\left(e^{-i \phi}\langle+|+e^{+i \phi}\langle-|\right)_{2}\left(e^{+i \Delta}|++\rangle+e^{-i \Delta}|--\rangle\right)\right|^{2}
$$

RH, Martin, Okui, Primulando, Yu 1308.1094

Polarizes

Counts vs relative polarization and

$$
\mid(\langle+|+\langle-|)_{1} \otimes\left(e^{-i \phi}\langle+|+e^{+i \phi}\langle |\right.
$$

RH, Martin, Okui, Primulando, Mu 1308.1094

Summary

* Its time to probe the Higgs beyond rates. Today's examples:
- Flavor violating Hings decay. 2.5σ excess in $h \rightarrow \tau \mu$.
- CP violation in $h \rightarrow \tau \tau$. Polarization measurements.
- CP properties of hr y. Golden channel!
* The decay $h \rightarrow 4 \ell$ can be a complementary probe of the $h Z \gamma$ coupling.

Deleted Scenes

Real World

* Unfortunately we don't have polarizers for τ 's. But they decay!

"pion-plane" correlated with I polarization.
* An optimized "polarizer" (using v knowledge):

$$
\begin{aligned}
& \frac{m_{h}}{2}\left[\left.\left(y_{ \pm}-r\right) \vec{p}_{\pi^{ \pm}}\right|_{0}-\left.\left(y_{ \pm}+r\right) \vec{p}_{\pi^{0 \pm}}\right|_{0}\right]^{\perp} \\
& \text { with }\left\{\begin{array}{l}
q_{ \pm} \equiv p_{\pi^{ \pm}}-p_{\pi^{ \pm \pm}} \\
y_{ \pm} \equiv \frac{2 q_{ \pm} \cdot p_{r^{ \pm}}}{m_{2}^{2}+m_{p}^{2}}=\frac{q_{ \pm} \cdot p_{r} \pm}{p_{p} \pm p_{r \pm}}, \\
r \equiv \frac{m_{\rho}^{2}-4 m_{\pi}^{2}}{m_{\tau}^{2}+m_{\rho}^{2}} \approx 0.14 .
\end{array}\right.
\end{aligned}
$$

Real World

* Unfortunately we don't have polarizers for τ 's. But they decay!

"pion-plane" correlated with τ polarization.
* An optimized "polari

$$
\frac{m_{h}}{2}\left[\left.\left(y_{ \pm}-r\right) \vec{p}_{\pi^{ \pm}}\right|_{0}-(?\right.
$$

LHC

* Using collinear approximation, we form an LHC observable:

* Using collinear approximation, we form an LHC observable:

Truth level Θ and Θ from the collinear approximation for $\Delta=0$

Higgs Factory

* In a Higgs factory we can reconstruct the
whole event (up to a two-fold ambiguity).

$\sigma_{e^{+} e^{-} \rightarrow h Z}$	0.30 pb
$\operatorname{Br}\left(h \rightarrow \tau^{+} \tau^{-}\right)$	6.1%
$\operatorname{Br}\left(\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu\right)$	26%
$\operatorname{Br}(Z \rightarrow$ visibles $)$	80%
$\mathrm{~N}_{\text {events }}$	990
Accuracy	4.4°

TABLE I: Cross section, branching fractions, expected number of signal events, and accuracy for measuring Δ for the ILC with $\sqrt{s}=250 \mathrm{GeV}$ and $1 \mathrm{ab}^{-1}$ integrated luminosity.

