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B. Sensitivity as Function of Number of Events

Using the definition in Eq.(6) we fit to a ‘true’ param-
eter point,

~A
o

= (0, 0, 0, 0, 0, 0), (8)

where we allow all six parameters in ~A to float simultane-
ously in the fit. The ‘true’ point ~A

o

in Eq.(8) is roughly
the prediction of the SM until getting to a precision of
O(10�2�10�3) so it serves as a good ‘bench mark’ point
for us to estimate the sensitivity to the various couplings.
In Fig. 5 we show the result for � vsN

S

for the six param-
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FIG. 5. The results for the e↵ective �, or average error de-
fined in Eq.(7), of each coupling as a function of the num-
ber of signal events NS . Error bars are shown, but they are
smaller than the dot sizes. We combine the 2e2µ, 4e, and 4µ
channels in the data set and our likelihood. On the top axis
we also show an approximate projection for the luminosity
⇥ e�ciency needed at the LHC to obtain a given number of
signal events. The vertical gray dashed line indicates a rough
estimate for the final LHC luminosity which will be achieved
(⇠ 3000fb�1) using production cross section and branching
fraction values obtained from the LHC Higgs Cross Section
Working Group [45, 46]. We indicate by the green dashed line
the value ⇠ 0.008 corresponding roughly to the magnitude
of A��

2 predicted by the SM at 125 GeV. All couplings are
floated simultaneously and defined in Eq.(1).

eters defined in Eq.(1). Since all parameters are floated
simultaneously these sensitivity projections include all
correlations between the various couplings. We indicate

by the green dashed line the value ⇠ 0.0083 which we use
as an approximate threshold for the necessary sensitivity
to begin to probe these couplings in the SM. On the top
axis we also show an estimate for the expected LHC lu-
minosity multiplied by e�ciency while the vertical gray
dashed line indicates a rough estimate for the final LHC
luminosity which will be achieved (⇠ 3000fb�1). We have
used production cross sections for both gluon fusion and
vector boson fusion as well as the h ! 4` branching frac-
tion values provided by the LHC Higgs Cross Section
Working Group [45, 46].
There are a number of interesting features to note in

these results. The first is the di↵erent slopes of the various
sensitivity curves for each coupling. These slopes can be
understood by recalling the tables of the integrated mag-
nitudes in Figs. 3 and 4. Looking at the Z� curves we see
a bending shape not seen for the other couplings. This
bending comes from the interplay between e↵ects which
dominate in two regimes. One is when the squared terms
drive the sensitivity (see Fig. 3). This occurs in the regime
of smaller data sets when fluctuations lead to larger val-
ues of the couplings to be extracted in the maximiza-
tion procedure, i.e. larger errors. Since the fluctuations
of the ‘true’ model (the SM with AZZ

1 = 2 in this case)
go like N�1/2 this implies that when the squared terms
dominate we expect |AZ�

2,3|2 ⇠ N�1/2 which means that
the average error for the Z� couplings then scales like
�(AZ�

2,3) ⇠ N�1/4.
The second regime occurs for larger data sets where

smaller fluctuations allow for smaller values (closer to
zero for the true SM point) of the loop induced couplings
to be extracted. Here we expect the interference terms
with the SM to dominate (see Fig. 4). Thus, now we have
AZZ

1 ⇥AZ�

2 = 2⇥AZ�

2 ⇠ N�1/2 ) �(AZ�

2,3) ⇠ N�1/2. The
detailed shape of the curves will depend on where the
transition from one regime to the other occurs. For the
Z� couplings this transition occurs later at larger event
counts because of the large size of the squared terms to
begin with (see Fig. 3). For the ZZ and �� couplings this
transition occurs much earlier at smaller data sets and is
therefore ‘hidden’ in the highly non-gaussian region of
low event count. Thus for the ZZ and �� couplings the
regime of �(AZZ,��

2,3 ) ⇠ N�1/2 begins much sooner and we
have the scaling observed in Fig. 5. Note however, that
these considerations only describe the dominant behavior
and the precise shape in the end is determined by the net
e↵ect of all possible contributions.
The next feature to note in Fig. 5 is that the sensitiv-

ity to the �� couplings is significantly greater than for
Z� and even more so than for ZZ. This was to be ex-
pected from our considerations of the di↵erential spectra
in Sec. IID as well as integrated magnitudes defined in
Eq.(5). In fact we see that for the �� couplings, �(A��

2,3)

3 This corresponds to the magnitude of A��
2 predicted by the SM

at 125 GeV for on-shell external photons [47].
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FIG. 7. The results of our parameter extraction for the
true ‘SM-like’ point represented by the star and defined in
Eq.(9). We combine the 2e2µ, 4e, and 4µ channels in the data
set and our likelihood. The fit is performed for NS = 12800
events which roughly corresponds to the projected final LHC
luminosity of ⇠ 3000fb�1 and assumes a uniform e�ciency
of ⇠ 60% for all three final states. We show fit results for
A��

2 vs A��
3 (floating all couplings). The turquoise circles cor-

respond to the 68% and 95% confidence interval obtained in
the golden channel while the pink ring indicates the projected
1� confidence interval which will be achieved in h ! �� [49]
for the same luminosity. The thin green line shows the se-
vere constraint coming from the electron EDM in a minimal
model where the mass of the states which generate these oper-
ators is a TeV and that the Higgs couplings to first generation
fermions are of order their SM value [37, 38]. This constraint
can be completely relaxed in other models [37].

makes the golden channel the unique method capable of
determining these properties in the foreseeable future.

D. Comments on Results and Approximations

Of course the results we have presented in this study
are the ideal case. We have used simply the LO fully
di↵erential cross section for h ! 4` and performed
fits to data generated from the analytic expression it-
self. There are a number of additional e↵ects we ne-
glected including production, background, and NLO de-
cay e↵ects [40, 41]. However, all of these e↵ects which
we have neglected are sub dominant [24, 31, 32] and do
not become important until we begin to reach the level
of sensitivity needed to measure the SM prediction for
the e↵ective Higgs couplings. Thus they do not qualita-
tively change the results presented here and in particu-
lar the conclusion that the LHC has excellent prospects

of directly establishing the CP properties of the Higgs
coupling to photons. To make more precise statements a
more detailed framework is needed which includes these
various e↵ects. We believe much progress can be made
on all of these aspects and that sensitivity closely ap-
proximating Figs. 5-7 can be achieved during LHC run-
ning. We leave a study of all of these e↵ects to ongo-
ing work [39, 43] building on the framework introduced
in [24, 31, 32].

IV. CONCLUSIONS

We have examined the expected sensitivity of the
h ! 4` golden channel to the loop induced couplings
of the Higgs boson to ZZ, Z�, and �� gauge boson pairs
for values approximating those predicted by the Stan-
dard Model. We have demonstrated qualitatively that the
golden channel has excellent prospects of directly estab-
lishing the CP nature of the Higgs couplings to photons,
well before the end of LHC running, with less optimistic
prospects for the ZZ and Z� loop induced couplings.
We emphasize that in obtaining our results we have

not attempted to optimize the analysis for sensitivity to
these couplings. As part of an ongoing investigation we
examine whether by altering the cuts and reconstruction
which are applied one can enhance the sensitivity even
more than what has been found here.
Even without optimizing our analysis we find that with

standard ‘CMS-like’ cuts and reconstruction and with
⇠ 100 � 400fb�1 of luminosity the LHC will reach the
levels necessary to begin probing the loop induced Stan-
dard Model e↵ects which generate the Higgs coupling to
photons. This of course warrants further study, but indi-
cates that the golden channel is capable of directly prob-
ing the CP properties of the Higgs couplings to photons,
including the overall sign, by the end of LHC running.
This measurement can not be made in the h ! ��

channel or in other indirect approaches without making
model dependent assumptions. This makes the golden
channel the unique method capable of determining these
properties in the foreseeable future and we encourage ex-
perimentalists at the LHC to carry out this measurement.
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respect to the fermion mass matrix m in Eq. (1).

The simplest example for a full theory of this class is a type III two Higgs doublet model

(2HDM) where both Higgses obtain a vev and couple to fermions. In the full theory both

of the scalars then have a Lagrangian of the form (1)

LY = �mif̄
i
Lf

i
R � Y a

ij(f̄
i
Lf

j
R)h

a + h.c.+ · · · , (8)

where the index a runs over all the scalars (with Y a
ij imaginary for pseudoscalars), and mi

receives contributions from both vevs. In addition there is also a scalar potential which

mixes the two Higgses. Diagonalizing the Higgs mass matrix then also changes Y a
ij , but

removes the Higgs mixing. For our purposes it is simplest to work in the Higgs mass basis.

All the results for a single Higgs are then trivially modified, replacing our final expressions

below by a sum over several Higgses. For a large mass gap, where only one Higgs is light, the

contributions from the heavier Higgs are power suppressed, unless its flavor violating Yukawa

couplings are parametrically larger than those of the light Higgs. The contributions from

the heavy Higgs correspond to the higher dimensional operators discussed in the previous

paragraph. This example can be trivially generalized to models with many Higgs doublets.

We next derive constraints on flavor violating Higgs couplings and work out the allowed

branching fractions for flavor violation Higgs decays. In placing the bounds we will neglect

the FV contributions of the remaining states in the full theory. Our bounds thus apply

barring cancellations with these other terms.

III. LEPTONIC FLAVOR VIOLATING HIGGS DECAYS

The FV decays h ! eµ, e⌧, µ⌧ arise at tree level from the assumed flavor violating Yukawa

interactions, Eq. (1), where the relevant terms are explicitly

LY �� YeµēLµRh� Yµeµ̄LeRh� Ye⌧ ēL⌧Rh� Y⌧e⌧̄LeRh� Yµ⌧ µ̄L⌧Rh� Y⌧µ⌧̄LµRh+ h.c. .

(9)

The bounds on the FV Yukawa couplings are collected in Table I, where for simplicity of

presentation the flavor diagonal muon and tau Yukawa couplings,

LY � �Yµµµ̄LµRh� Y⌧⌧ ⌧̄L⌧Rh+ h.c. , (10)
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the arguments are zth = m2

t/m
2

H , zWh = m2

W/m2

H , while the prefactor is

 =
↵

16⇡

g2

m2

W

v

m⌧

=
↵

2
p
2⇡

GF

v

m⌧

. (A9)

The contributions from the 2-loop diagrams with an internal Z are smaller as they are

suppressed by 1� 4s2W ' 0.08. They are

�ctZL = �6Qt

(1� 4s2W )(1� 4Qts
2

W )

16s2W c2W

v

mt

Y ⇤
⌧µ⇥

⇥ ⇥

Re(Ytt)f̃(zth, ztZ)� iIm(Ytt)g̃(zth, ztZ)
⇤

,

(A10)
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with sW ⌘ sin ✓W , cW ⌘ cos ✓W , tW ⌘ tan ✓W , ztz ⌘ m2

t/m
2

Z, zWZ ⌘ m2

W/m2

Z and the loop
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Figure 1: Diagrams contributing to the flavor violating decay ⌧ ! µ�, mediated by a Higgs boson

with flavor violating Yukawa couplings.

The bounds on the FV Yukawa couplings are collected in Table I, where for simplicity of

presentation the flavor diagonal muon and tau Yukawa couplings,

LY � �Yµµµ̄LµRh� Y⌧⌧ ⌧̄L⌧Rh+ h.c. , (10)

were set equal to their respective SM values
�

Yµµ

�

S

M

= mµ/v,
�

Y⌧⌧

�

S

M

= m⌧/v. Similar

bounds on FV Higgs couplings to quarks are collected in Table II. Similar constraints on

flavor violating Higgs decays have been present recently also in [24]. While our results agree

qualitatively with previous ones, small numerical di↵erences are expected because we avoid

some of the approximations made by previous authors. We also consider some constraining

processes not discussed before.

We first give more details on how the bounds in Tables I and II were obtained and then

move on to predictions for the allowed sizes of the FV Higgs decays.

A. Constraints from ⌧ ! µ�, ⌧ ! e� and µ ! e�

The e↵ective Lagrangian for the ⌧ ! µ� decay is given by

L
e

↵

= cLQL� + cRQR� + h.c. , (11)

where the dim-5 electromagnetic penguin operators are

QL�,R� =
e

8⇡2

m⌧

�

µ̄ �↵�PL,R⌧
�

F↵� ,
(12)

with ↵, � the Lorentz indices and F↵� the electromagnetic field strength tensor. The Wilson

coe�cients cL and cR receive contributions from the two 1-loop diagrams shown in Fig. 1

(with the first one dominant), and a comparable contribution from Barr-Zee type 2-loop
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Figure 5: Diagrams contributing to µ ! e conversion in nuclei via the flavor violating HiggsYukawa couplings Yµe and Yeµ.

e↵ective Lagrangian is

L
E

D

M

= � i

2
dµ

�

µ̄�↵��5µ
�

F↵� , (24)
with the electric dipole moment given by (neglecting the terms suppressed by mµ/m⌧ orm⌧/mh)

dµ ' � Im(Yµ⌧Y⌧µ)
16⇡2

em⌧

2m2

h

⇣

2 log
m2

h

m2

⌧

� 3
⌘

. (25)
The experimental constraint �10⇥ 10�2

0 e cm < dµ < 8⇥ 10�2

0 e cm [29] translates into therather weak limit �0.8 . Im(Yµ⌧Y⌧µ) . 1.0.
A similar diagram with electrons instead of muons on the external legs also contributes tothe electron EDM, de. The experimental constraint |de| < 0.105⇥ 10�2

6e cm [29] translatesinto |Im(Ye⌧Y⌧e)| < 1.1⇥10�8 for a tau running in the loop, and into |Im(YeµYµe)| < 9.8⇥10�8for a muon running in the loop.

F. Constraints from µ ! e conversion in nuclei

Very stringent constraints on the FV Yukawa couplings Yµe and Yeµ come from experi-mental searches for µ ! e conversion in nuclei. The relevant diagrams with one insertion ofthe FV Yukawa coupling are shown in Fig. 5. An e↵ective scalar interaction arises alreadyat tree level from the first diagram in Fig. 5, while vector and electromagnetic dipole contri-butions arise at one loop level. We give complete expressions for the tree level and one loopcontributions in Appendix A 3. There are also two-loop contributions, similar to the ones
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where "X and #X are the spin orientations of particle X. We can work in the non-

relativistic limit here. For a contact interaction, the spatial wave function of muonium,

�
1s = exp(�r/aM)/[⇡a3M ]1/2 only needs to be evaluated at the origin. (Here r is the

electron–antimuon distance and aM = (me +mµ)/(memµ↵) is the muonium Bohr radius.)

The resulting mass splitting between the two mass eigenstates of the mixed M–M̄ system

is [34],

�M = 2 |M
¯MM | = |Yµe + Y ⇤

eµ|2
2⇡a3m2

h

, (19)

and the time-integrated conversion probability is

P (M ! M̄) =

Z 1

0

dt�µ sin2(�M t) e��µt =
2

�2

µ/(�M)2 + 4
. (20)

The bound from the MACS experiment [33] then translates into |Yµe + Y ⇤
eµ| < 0.079.

D. Constraints from magnetic dipole moments

The CP conserving and CP violating parts of the diagram in Fig. 4 generate magnetic

and electric dipole moments of the muon, respectively. Since the experimental value of the
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Figure 7: Two representative diagrams through which flavor violating Higgs Yukawa couplings can

contribute to neutral meson mixing.

the reach of the LHC as we shall show in Sec. V. The allowed sizes of these two decay widths

are comparable to the sizes of decay widths into nonstandard decay channels (such as the

invisible decay width) that are allowed by global fits [38]. If there is no significant negative

contribution to Higgs production through gluon fusion, one has BR(h ! invisible) . 20%,

while allowing for arbitrarily large modifications of gluon and photon couplings to the Higgs

constrain BR(h ! invisible) . 65% [38]. These two bounds apply without change also to

BR(h ! ⌧µ), BR(h ! ⌧e) and BR(h ! eµ).

In contrast to decays involving a ⌧ lepton, the branching ratio for h ! eµ is extremely

well constrained by µ ! e� and µ ! e conversion bounds, and is required to be below

BR(h ! eµ) . 2⇥ 10�8, well beyond the reach of the LHC.

IV. HADRONIC FLAVOR VIOLATING DECAYS OF THE HIGGS

We next consider flavor violating decays of the Higgs to quarks. We first discuss two-body

decays to light quarks, h ! b̄d, b̄s, s̄d, c̄u, and then turn to FV three body decays mediated

by an o↵-shell top, h ! t̄⇤c ! Wb̄c and h ! t̄⇤u ! Wb̄u as well as FV top decays to t ! ch

and t ! uh. Our limits are summarized in Table II.
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Technique Coupling Constraint
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|Yuc|2, |Ycu|2 < 5.0⇥ 10�9

|YucYcu| < 7.5⇥ 10�10

B0

d oscillations [48]
|Ydb|2, |Ybd|2 < 2.3⇥ 10�8

|YdbYbd| < 3.3⇥ 10�9

B0

s oscillations [48]
|Ysb|2, |Ybs|2 < 1.8⇥ 10�6

|YsbYbs| < 2.5⇥ 10�7

K0 oscillations [48]

Re(Y 2

ds), Re(Y
2

sd) [�5.9 . . . 5.6]⇥ 10�10

Im(Y 2

ds), Im(Y 2

sd) [�2.9 . . . 1.6]⇥ 10�12

Re(Y ⇤
dsYsd) [�5.6 . . . 5.6]⇥ 10�11

Im(Y ⇤
dsYsd) [�1.4 . . . 2.8]⇥ 10�13

single-top production [49]

p

|Y 2

tc|+ |Yct|2 < 3.7
p

|Y 2

tu|+ |Yut|2 < 1.6

t ! hj [50]

p

|Y 2

tc|+ |Yct|2 < 0.34
p

|Y 2

tu|+ |Yut|2 < 0.34

D0 oscillations [48]

|YutYct|, |YtuYtc| < 7.6⇥ 10�3

|YtuYct|, |YutYtc| < 2.2⇥ 10�3

|YutYtuYctYtc|1/2 < 0.9⇥ 10�3

neutron EDM [37] Im(YutYtu) < 4.4⇥ 10�8

Table II: Constraints on flavor violating Higgs couplings to quarks. We have assumed a Higgs mass

mh = 125 GeV, and we have taken the diagonal Yukawa couplings at their SM values.

by an o↵-shell top, h ! t̄⇤c ! Wb̄c and h ! t̄⇤u ! Wb̄u as well as FV top decays to t ! ch

and t ! uh. Our limits are summarized in Table II.

A. Flavor violating Higgs decays into light quarks

Flavor violating Higgs couplings to quarks can generate flavor changing neutral currents

(FCNCs) at tree level, see Fig. 7 (a), and are thus well constrained by the measured Bd,s �
B̄d,s, K0 � K̄0 and D0 � D̄0 mixing rates. Integrating out the Higgs generates an e↵ective
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t + (h -> γγ) :  Ytj<0.17 
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where "X and #X are the spin orientations of particle X. We can work in the non-

relativistic limit here. For a contact interaction, the spatial wave function of muonium,

�
1

s = exp(�r/aM)/[⇡a3M ]1/2 only needs to be evaluated at the origin. (Here r is the

electron–antimuon distance and aM = (me +mµ)/(memµ↵) is the muonium Bohr radius.)

The resulting mass splitting between the two mass eigenstates of the mixed M–M̄ system

is [34],
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and the time-integrated conversion probability is
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The bound from the MACS experiment [33] then translates into |Yµe + Y ⇤
eµ| < 0.079.
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and electric dipole moments of the muon, respectively. Since the experimental value of the
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FIG. 4. The same as Fig. 3, but with AZZ
1 = 2 and all

other couplings to ⇠ 0.008. These values are useful to estimate
the sensitivities of the various terms at late stages of LHC
running. We see that interference terms with the SM (first
row) dominate over squared terms for all Ai

2,3.

terference terms between the signal operators and AZZ

1
dominate, with integrated magnitudes of ⇠ 10�2� 10�3,
and much smaller magnitudes for terms that involve two
loop operators. These small magnitudes may give the im-
pression that there is no sensitivity in the golden channel
to couplings other than AZZ

1 for parameter points ‘close
to’ the SM. However as the discussion in previous sec-
tions indicates, one has much more information in the
h ! 4` fully di↵erential decay width than just the inte-
grated magnitudes.

From our discussions of the integrated magnitudes and
di↵erential spectra we naively expect that we should have
the strongest sensitivity to the �� couplings followed by
the Z� couplings and the weakest sensitivity to the loop
induced ZZ couplings. As we will show below, this indeed
turns out to be the case.

III. RESULTS

To obtain our results we use the machinery devel-
oped and described in detail in [31]. We will take the
SM tree level prediction of AZZ

1 = 2 as input and fit
to the remaining six couplings simultaneously. Floating
all parameters simultaneously ensures that we account
for potentially important correlations between the vari-
ous couplings [31]. Note also that by fixing AZZ

1 = 2 we
are implicitly fitting to ratios of couplings and taking the
overall normalization as input since it can be obtained
from measurements of the total rate. This also serves to
minimize the dependence of our results on any produc-
tion e↵ects we have neglected.

For all of our results we combine the 2e2µ, 4e, and
4µ channels by computing the fully di↵erential decay
width for each final state [24, 31] (including identical fi-
nal state interference for 4e and 4µ) and combining them
into one likelihood. The data sets which we fit to are gen-
erated from these expressions and contain a mixture of
all three final states whose proportions are determined
by the overall normalization of the di↵erential widths for
each channel. Though we do not examine this issue here,
we note that the three channels do not possess the same
sensitivity. We leave a detailed examination of this inter-
esting point to an ongoing followup study [43].

A. Fit and Phase Space Definition

We define our six dimensional parameter space as,

~A = (AZZ

2 , AZZ

3 , AZ�

2 , AZ�

3 , A��

2 , A��

3 ). (6)

To estimate the sensitivity we obtain what we call an
‘e↵ective’ � or average error defined as [44],

� =

r
⇡

2
h|Â� ~A

o

|i, (7)

where Â is the value of the best fit parameter point ob-
tained by maximization of the likelihood with respect
to ~A. Here ~A

o

represents the ‘true’ value with which our
data sets are generated. The average error is then found
by conducting a large number of pseudoexperiments with
a fixed number of events and obtaining a distribution for
Â which will have some spread centered around the av-
erage value. We then translate the width of this distri-
bution into our e↵ective � which converges to the usual
interpretation of � when the distribution for Â is per-
fectly gaussian. We repeat this procedure for a range of
fixed number of signal events to obtain � as a function
of number of signal events N

S

.
We take the Higgs mass to be m

h

= 125 GeV and limit
our phase space to approximate the cuts used by CMS
as indicated by following cuts and reconstruction:

• p
T `

> 20, 10, 7, 7 GeV for lepton p
T

ordering,

• |⌘
`

| < 2.4 for the lepton rapidity,

• 40 GeV  M1 and 12 GeV  M2.

Here M1 and M2 are the reconstructed masses of the two
lepton pairs. In reconstructing M1 and M2 we always
impose M1 > M2 and take M1 to be the reconstructed
invariant mass for a particle and anti-particle pair which
is closer to the Z mass. Note however that two other
lepton pairings are possible and equally valid, but we
leave an exploration of these alternate reconstructions
to ongoing work [43]. For further details on the fitting
(maximization) procedure and on the statistical analysis
see [31, 32].
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Figure 1: Left: Comparison of the data (solid circles) failing the m1 ' m2 requirement in the
control sample where no isolation requirement is applied to reconstructed dimuons with the
prediction of the background shape model (solid line) scaled to the number of entries in the
data. The insets show the B17+8 and B8+8 templates (solid lines) for dimuons obtained with
background-enriched data samples. Right: Distribution of the invariant masses m1 vs. m2 for
the isolated dimuon systems for the three events in the data (shown as empty circles) surviving
all selections except the requirement that these two masses fall into the diagonal signal region
m1 ' m2 (outlined with dashed lines). The intensity (color online) of the shading indicates the
background expectation which is a sum of the bb and the direct J/y pair production contribu-
tions.

background shapes are collected with the same trigger and with kinematic properties similar to
those bb events passing the selections of the main analysis. These event samples do not overlap
the sample containing two dimuons that is used for the main analysis, and they have negligible
contributions from non-bb backgrounds. The B17+8 and B8+8 distributions, fitted with a para-
metric analytical function using a combination of Bernstein polynomials [62] and Crystal Ball
functions [63] describing resonances, are shown as insets in Fig. 1 (left). Once the Bbb(m1, m2)
template is constructed, it is used to provide a description of the bb background shape in the
main analysis.

To validate the constructed Bbb(m1, m2) template, we compare its shape with the distribution
of the invariant masses m1 vs. m2 from events obtained with all standard selections except
the requirement that each of the two reconstructed dimuons is isolated. Omitting the isolation
requirement provides a high-statistics control sample of events with two dimuons highly en-
riched with bb events. To avoid unblinding the search, the diagonal signal region is excluded
in both the data and the template, i.e. the comparison has been limited to the data events that
satisfy all analysis selections but fail the m1 ' m2 requirement. Distributions of m1 and m2 are
consistent with the projections of the Bbb(m1, m2) template on the respective axes normalized
to the number of events in the data control sample. The sum of the m1 and m2 distributions
agrees well with the sum of the template projections as shown in Fig. 1 (left).

Another cross-check has been performed using data events which satisfy all analysis selec-
tions except that the isolation parameters of each dimuon system have been required to satisfy
3 GeV/c < Isum < 8 GeV/c, which removes potential signal events since the signal selections
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q/�/p⌫�q/�. These combinations can be further simplified
as

q/±/p⌫±q/± = (m2

⌧ +m2

⇢) /k± , (19)

where

kµ± ⌘ y± qµ± + r pµ⌫± (20)

with4

y± ⌘ 2q± ·p⌧±

m2

⌧ +m2

⇢

=
q± ·p⌧±

p⇢± ·p⌧±
, (21)

r ⌘ m2

⇢ � 4m2

⇡

m2

⌧ +m2

⇢

⇡ 0.14 . (22)

In terms of k± and p⌧± , the square of the amplitude
in (17) only involves the traces over four � matrices, and
an elementary computation gives

|M|2 / P
/�, S + P

�, /S + P
�, S + P ⇤

�, S , (23)

where

P
/�, S ⌘ 2

⇥
(k� ·p⌧�)(p⌧� ·k

+

) + (k
+

·p⌧+)(p⌧+ ·k�)
�m2

⌧ (k� ·k
+

)
⇤
, (24)

P
�, /S ⌘ �2 cos(2�) (k� ·p⌧�)(k

+

·p⌧+) , (25)

P
�, S ⌘ �e2i�

⇥
(k� ·p⌧+)(k

+

·p⌧�)� (p⌧� ·p⌧+)(k� ·k
+

)

� i✏µ⌫⇢� k
µ
� p⌫⌧�k

⇢
+

p�⌧+

⇤
. (26)

Here, P
�, S is the interesting contribution that depends

on both � and the ⌧± spins. On the other hand, P
/�, S

is an uninteresting piece since it is independent of �. (It
is sensitive to the ⌧± spins, i.e., the relative orientation
of the ⌧+ and ⌧� subsystems, as it involves scalar prod-
ucts like k� ·k

+

). Lastly, P
�, /S does depend on � but is

insensitive to the spins, as it only involves k
+

·p⌧+ and
k� ·p⌧� , which are just scalar quantities of the ⌧+ and
⌧� subsystems alone.

We therefore focus on P
�, S. To reveal how it de-

pends on the relative orientations of the ⌧± systems to
each other, observe that P

�, S is antisymmetric under
k± $ p⌧± . This suggests that k± and p⌧± should be
combined into two antisymmetric tensors Fµ⌫

± , one for
each ⌧± system:

Fµ⌫
± ⌘ kµ± p⌫⌧± � k⌫± pµ⌧± = �F ⌫µ

± . (27)

In terms of these, P
�, S takes an elegant form:

P
�, S = e2i�

⇣1
2
F�µ⌫F

µ⌫
+

+
i

4
✏µ⌫⇢� F

µ⌫
� F ⇢�

+

⌘
. (28)

4 y+,� are respectively equal to y1,2 used in Refs. [15–18].

Moreover, the fact that Fµ⌫
± are antisymmetric 2nd-rank

tensors suggests that the physics is clearest in terms of
their “electric” and “magnetic” components:

Ei
± ⌘ F i0

± , Bi
± ⌘ �1

2
✏ijkF±jk . (29)

Indeed, P
�, S then simplifies into just one term:

P
�, S = �e2i�

⇥
( ~E� + i ~B�)·( ~E+

+ i ~B
+

)
⇤
. (30)

We will now develop intuition for ~E± and ~B±. First,
from (29), we have

~B± = ~p⌧±⇥ ~k± = ~v⌧±⇥ ~E± , (31)

where ~v⌧± ⌘ ~p⌧±/p0⌧± is the 3-velocity of the ⌧±. Thus,
~B± = 0 in the rest frame of each ⌧±, respectively, while
in all other frames ~B± are perpendicular to both ~E± and
~p⌧± . Moreover, in the boosted ⌧± limit (|~v⌧± | ! 1), we
have | ~B±| = | ~E±|.
Second, from (29), ~E± is given by

~E± = p0⌧± ~k± � k0± ~p⌧± . (32)

Clearly, ~E± takes the simplest form in the ⌧± rest frame
since then ~p⌧± in the second term vanishes. Let us use��
0

to indicate the quantities evaluated in the respective
⌧± rest frames. Then, combining (20) and (32) in the ⌧±

rest frames, we have

~E±
��
0

= m⌧
~k±

��
0

= m⌧

h
(y± � r) ~p⇡±

��
0

� (y± + r) ~p⇡0±
��
0

i
, (33)

where we have used ~p⌫±
��
0

= �~p⇡±
��
0

� ~p⇡0±
��
0

. Therefore,
in an arbitrary frame with a ⌧± velocity ~v⌧± , we have

~E
||
± = ~E

||
±
��
0

,

~E?
± = �±

h
~E±

��
0

� ~v⌧±⇥ ~B±
��
0

i?
=

E⌧±

m⌧

~E?
±
��
0

, (34)

where ~E
||
± and ~E?

± are the components of ~E± paral-
lel and perpendicular to ~v⌧± , respectively, while �± ⌘
(1 � |~v⌧± |2)�1/2 = E⌧±/m⌧ . An important implication
of (34) is that, for a boosted ⌧± (E⌧±/m⌧ � 1), we get

| ~E?
± | � | ~E||

±|, so ~E± also becomes perpendicular to ~v⌧± .

Thus, the relative magnitudes and orientations of ~E±,
~B±, and ~v⌧± in the boosted ⌧± limit are akin to those of
electromagnetic waves.
To summarize, we write out ~E± and ~B± in the Higgs

rest frame. Since the ⌧± are highly boosted in this frame,

we can neglect E||
±. Then, combining (33) and (34) with

E⌧± = mh/2, we get

~E± =
mh

2

h
(y± � r) ~p⇡±

��
0

� (y± + r) ~p⇡0±
��
0

i?
, (35)
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To measure �, it is necessary to keep the ⌧�⌧+ pair
in the above superpositions of �

1,1 and ��1,�1

, without
projecting the polarizations onto the helicity eigenstates.
From (9) and (10), we see that the coe�cients of �

1,1

and ��1,�1

are the complex conjugates of each other,
which implies that, regardless of �, the probability for
both ⌧� and ⌧+ to be right-handed is always equal to
that for both to be left-handed. Therefore, to distinguish
the two linear combinations in (10), we must measure
the polarizations in the directions perpendicular to the
momenta, as mentioned in item 1 above.

2. ⌧

� ! ⇢

�
⌫⌧

Assuming the SM weak interactions for the ⌧ and ⌫⌧ ,
the most general form of the amplitude for ⌧� ! ⇢� ⌫⌧
is given by

M⌧!⇢⌫ / (✏⇤⇢�)µ ū⌫⌧ �
µPL u⌧� , (11)

with PL ⌘ (1��
5

)/2. Again, Lorentz invariance dictates
that the proportionality factor omitted in (11) has no
momentum dependence.
In the ⌧� rest frame, the amplitude (11) has the form

M⌧!⇢⌫ / ✏⇤⇢� ·
⇣
"�1

sin
✓

2
� "

0

m⌧p
2m⇢

cos
✓

2

⌘
, (12)

where ✓ 2 [0,⇡] is the angle between the ⇢� momen-
tum and the ⌧� polarization in this frame, and "µ�1

, "µ
0

,
and "µ

1

are the polarization vectors for the left-handed,
longitudinal, and right-handed polarizations of the ⇢�,
respectively. Since m2

⌧/(2m
2

⇢) ⇠ 3, the amplitude (12) is
dominated by the second term, roughly speaking. Thus,
we are led to the picture described in the item 2 above,
namely, the ⇢� is predominantly longitudinal (✏⇢� ⇠ "

0

)
and mostly emitted in the direction of the ⌧� polariza-
tion (✓ ⇠ 0).

3. ⇢

� ! ⇡

�
⇡

0

The most general form of the amplitude for ⇢� !
⇡� ⇡0 is given by

M⇢!⇡⇡ / ✏⇢� ·(p⇡� � p⇡0) . (13)

The other linear combination, p⇡� + p⇡0 , cannot appear
here because ✏⇢� ·(p⇡�+ p⇡0) = ✏⇢� · p⇢� = 0. Again, the
proportionality factor omitted in (13) cannot have any
momentum dependence by Lorentz invariance.

Boosting the longitudinal ⇢� to its rest frame, and
neglecting the ⇡±-⇡0 mass di↵erence, the amplitude (13)
takes the form

M⇢!⇡⇡ / |~p⇡�� ~p⇡0| cos , (14)

where  is the angle between the original ⇢� polarization
and the vector ~p⇡� � ~p⇡0 in the rest frame. Therefore,

the momentum di↵erence, ~p⇡� � ~p⇡0 , is roughly (anti-
)parallel ( ⇠ 0 or ⇡) to the original ⇢� polarization, as
we described in the item 3 above.

B. The “electric” and “magnetic” variables

We now analytically compute the full matrix element
for the process (7) to identify the observable that is most
sensitive to the CP phase �. Combining the ampli-
tudes (8), (11) and (13), the full amplitude for the pro-
cess (7) at tree level is given by

M
full

/ ū⌫�(/p⇡�� /p⇡0�)PL (/p⌧�+m⌧ )

⇥ (cos�+ i�
5

sin�)

⇥ (�/p⌧++m⌧ ) (/p⇡+� /p⇡0+)PLv⌫+ , (15)

where ⇡0± refers to the ⇡0 coming from the ⇢± decay, re-
spectively, and we have denoted ⌫⌧ and ⌫̄⌧ as ⌫� and ⌫+,
respectively. The following approximations have been
made above:

• We neglected the diagram in which the two ⇡0 are
exchanged, assuming that we can identify ⇡0± by
looking for a ⇡0 flying near ⇡±, respectively. As
the taus from h ! ⌧+⌧� are highly boosted and
back-to-back in the Higgs rest frame, this should
be an excellent approximation.

• All intermediate particles are assumed to be on-
shell, so the denominators of their propagators have
been dropped in (15), as they are just momentum-
independent constants ⇠ im�.

• We neglect m⇡± � m⇡0 throughout the paper. A
convenient consequence of this (very good) approxi-
mation is that the ⇢⇡⇡ amplitude in (13) e↵ectively
satisfies a “Ward identity”, i.e., it vanishes upon
replacing ✏⇢� with p⇢� :

p⇢� ·(p⇡�� p⇡0�) = m2

⇡± �m2

⇡0 = 0 . (16)

This is why we have dropped the pµp⌫/m
2

⇢ term of
the ⇢± propagators in (15).

Carefully keeping the combinations p⇡± � p⇡0± intact as
suggested by the heuristic analysis of section IIIA, the
amplitude (15) can be rewritten as

M
full

/ ū⌫� q/�
�
ei�/p⌧� � e�i�/p⌧+

�
q/
+

PLv⌫+ , (17)

where

q± ⌘ p⇡± � p⇡0± . (18)

Taking {p⌧± , q±, p⌫±} as the set of independent vari-
ables (subject to the constraint (p⌧+ + p⌧�)2 = m2

h), let
us analyze how the physics depends on these momenta.
First, in the square of the amplitude (17), the variables
q± and p⌫± will only enter via the products q/

+

/p⌫+q/
+

and

with
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⇢
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⇡±

5

q/�/p⌫�q/�. These combinations can be further simplified
as

q/±/p⌫±q/± = (m2

⌧ +m2

⇢) /k± , (19)

where

kµ± ⌘ y± qµ± + r pµ⌫± (20)

with4

y± ⌘ 2q± ·p⌧±

m2

⌧ +m2

⇢

=
q± ·p⌧±

p⇢± ·p⌧±
, (21)

r ⌘ m2

⇢ � 4m2

⇡

m2

⌧ +m2

⇢

⇡ 0.14 . (22)

In terms of k± and p⌧± , the square of the amplitude
in (17) only involves the traces over four � matrices, and
an elementary computation gives

|M|2 / P
/�, S + P

�, /S + P
�, S + P ⇤

�, S , (23)

where

P
/�, S ⌘ 2

⇥
(k� ·p⌧�)(p⌧� ·k

+

) + (k
+

·p⌧+)(p⌧+ ·k�)
�m2

⌧ (k� ·k
+

)
⇤
, (24)

P
�, /S ⌘ �2 cos(2�) (k� ·p⌧�)(k

+

·p⌧+) , (25)

P
�, S ⌘ �e2i�

⇥
(k� ·p⌧+)(k

+

·p⌧�)� (p⌧� ·p⌧+)(k� ·k
+

)

� i✏µ⌫⇢� k
µ
� p⌫⌧�k

⇢
+

p�⌧+

⇤
. (26)

Here, P
�, S is the interesting contribution that depends

on both � and the ⌧± spins. On the other hand, P
/�, S

is an uninteresting piece since it is independent of �. (It
is sensitive to the ⌧± spins, i.e., the relative orientation
of the ⌧+ and ⌧� subsystems, as it involves scalar prod-
ucts like k� ·k

+

). Lastly, P
�, /S does depend on � but is

insensitive to the spins, as it only involves k
+

·p⌧+ and
k� ·p⌧� , which are just scalar quantities of the ⌧+ and
⌧� subsystems alone.

We therefore focus on P
�, S. To reveal how it de-

pends on the relative orientations of the ⌧± systems to
each other, observe that P

�, S is antisymmetric under
k± $ p⌧± . This suggests that k± and p⌧± should be
combined into two antisymmetric tensors Fµ⌫

± , one for
each ⌧± system:

Fµ⌫
± ⌘ kµ± p⌫⌧± � k⌫± pµ⌧± = �F ⌫µ

± . (27)

In terms of these, P
�, S takes an elegant form:

P
�, S = e2i�

⇣1
2
F�µ⌫F

µ⌫
+

+
i

4
✏µ⌫⇢� F

µ⌫
� F ⇢�

+

⌘
. (28)

4 y+,� are respectively equal to y1,2 used in Refs. [15–18].

Moreover, the fact that Fµ⌫
± are antisymmetric 2nd-rank

tensors suggests that the physics is clearest in terms of
their “electric” and “magnetic” components:

Ei
± ⌘ F i0

± , Bi
± ⌘ �1

2
✏ijkF±jk . (29)

Indeed, P
�, S then simplifies into just one term:

P
�, S = �e2i�

⇥
( ~E� + i ~B�)·( ~E+

+ i ~B
+

)
⇤
. (30)

We will now develop intuition for ~E± and ~B±. First,
from (29), we have

~B± = ~p⌧±⇥ ~k± = ~v⌧±⇥ ~E± , (31)

where ~v⌧± ⌘ ~p⌧±/p0⌧± is the 3-velocity of the ⌧±. Thus,
~B± = 0 in the rest frame of each ⌧±, respectively, while
in all other frames ~B± are perpendicular to both ~E± and
~p⌧± . Moreover, in the boosted ⌧± limit (|~v⌧± | ! 1), we
have | ~B±| = | ~E±|.
Second, from (29), ~E± is given by

~E± = p0⌧± ~k± � k0± ~p⌧± . (32)

Clearly, ~E± takes the simplest form in the ⌧± rest frame
since then ~p⌧± in the second term vanishes. Let us use��
0

to indicate the quantities evaluated in the respective
⌧± rest frames. Then, combining (20) and (32) in the ⌧±

rest frames, we have

~E±
��
0

= m⌧
~k±

��
0

= m⌧

h
(y± � r) ~p⇡±

��
0

� (y± + r) ~p⇡0±
��
0

i
, (33)

where we have used ~p⌫±
��
0

= �~p⇡±
��
0

� ~p⇡0±
��
0

. Therefore,
in an arbitrary frame with a ⌧± velocity ~v⌧± , we have

~E
||
± = ~E

||
±
��
0

,

~E?
± = �±

h
~E±

��
0

� ~v⌧±⇥ ~B±
��
0

i?
=

E⌧±

m⌧

~E?
±
��
0

, (34)

where ~E
||
± and ~E?

± are the components of ~E± paral-
lel and perpendicular to ~v⌧± , respectively, while �± ⌘
(1 � |~v⌧± |2)�1/2 = E⌧±/m⌧ . An important implication
of (34) is that, for a boosted ⌧± (E⌧±/m⌧ � 1), we get

| ~E?
± | � | ~E||

±|, so ~E± also becomes perpendicular to ~v⌧± .

Thus, the relative magnitudes and orientations of ~E±,
~B±, and ~v⌧± in the boosted ⌧± limit are akin to those of
electromagnetic waves.
To summarize, we write out ~E± and ~B± in the Higgs

rest frame. Since the ⌧± are highly boosted in this frame,

we can neglect E||
±. Then, combining (33) and (34) with

E⌧± = mh/2, we get

~E± =
mh

2

h
(y± � r) ~p⇡±

��
0

� (y± + r) ~p⇡0±
��
0

i?
, (35)
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q/�/p⌫�q/�. These combinations can be further simplified
as

q/±/p⌫±q/± = (m2

⌧ +m2

⇢) /k± , (19)

where

kµ± ⌘ y± qµ± + r pµ⌫± (20)

with4

y± ⌘ 2q± ·p⌧±

m2

⌧ +m2

⇢

=
q± ·p⌧±

p⇢± ·p⌧±
, (21)

r ⌘ m2

⇢ � 4m2

⇡

m2

⌧ +m2

⇢

⇡ 0.14 . (22)

In terms of k± and p⌧± , the square of the amplitude
in (17) only involves the traces over four � matrices, and
an elementary computation gives

|M|2 / P
/�, S + P

�, /S + P
�, S + P ⇤

�, S , (23)

where

P
/�, S ⌘ 2

⇥
(k� ·p⌧�)(p⌧� ·k

+

) + (k
+

·p⌧+)(p⌧+ ·k�)
�m2

⌧ (k� ·k
+

)
⇤
, (24)

P
�, /S ⌘ �2 cos(2�) (k� ·p⌧�)(k

+

·p⌧+) , (25)

P
�, S ⌘ �e2i�

⇥
(k� ·p⌧+)(k

+

·p⌧�)� (p⌧� ·p⌧+)(k� ·k
+

)

� i✏µ⌫⇢� k
µ
� p⌫⌧�k

⇢
+

p�⌧+

⇤
. (26)

Here, P
�, S is the interesting contribution that depends

on both � and the ⌧± spins. On the other hand, P
/�, S

is an uninteresting piece since it is independent of �. (It
is sensitive to the ⌧± spins, i.e., the relative orientation
of the ⌧+ and ⌧� subsystems, as it involves scalar prod-
ucts like k� ·k

+

). Lastly, P
�, /S does depend on � but is

insensitive to the spins, as it only involves k
+

·p⌧+ and
k� ·p⌧� , which are just scalar quantities of the ⌧+ and
⌧� subsystems alone.

We therefore focus on P
�, S. To reveal how it de-

pends on the relative orientations of the ⌧± systems to
each other, observe that P

�, S is antisymmetric under
k± $ p⌧± . This suggests that k± and p⌧± should be
combined into two antisymmetric tensors Fµ⌫

± , one for
each ⌧± system:

Fµ⌫
± ⌘ kµ± p⌫⌧± � k⌫± pµ⌧± = �F ⌫µ

± . (27)

In terms of these, P
�, S takes an elegant form:

P
�, S = e2i�

⇣1
2
F�µ⌫F

µ⌫
+

+
i

4
✏µ⌫⇢� F

µ⌫
� F ⇢�

+

⌘
. (28)

4 y+,� are respectively equal to y1,2 used in Refs. [15–18].

Moreover, the fact that Fµ⌫
± are antisymmetric 2nd-rank

tensors suggests that the physics is clearest in terms of
their “electric” and “magnetic” components:

Ei
± ⌘ F i0

± , Bi
± ⌘ �1

2
✏ijkF±jk . (29)

Indeed, P
�, S then simplifies into just one term:

P
�, S = �e2i�

⇥
( ~E� + i ~B�)·( ~E+

+ i ~B
+

)
⇤
. (30)

We will now develop intuition for ~E± and ~B±. First,
from (29), we have

~B± = ~p⌧±⇥ ~k± = ~v⌧±⇥ ~E± , (31)

where ~v⌧± ⌘ ~p⌧±/p0⌧± is the 3-velocity of the ⌧±. Thus,
~B± = 0 in the rest frame of each ⌧±, respectively, while
in all other frames ~B± are perpendicular to both ~E± and
~p⌧± . Moreover, in the boosted ⌧± limit (|~v⌧± | ! 1), we
have | ~B±| = | ~E±|.
Second, from (29), ~E± is given by

~E± = p0⌧± ~k± � k0± ~p⌧± . (32)

Clearly, ~E± takes the simplest form in the ⌧± rest frame
since then ~p⌧± in the second term vanishes. Let us use��
0

to indicate the quantities evaluated in the respective
⌧± rest frames. Then, combining (20) and (32) in the ⌧±

rest frames, we have

~E±
��
0

= m⌧
~k±

��
0

= m⌧

h
(y± � r) ~p⇡±

��
0

� (y± + r) ~p⇡0±
��
0

i
, (33)

where we have used ~p⌫±
��
0

= �~p⇡±
��
0

� ~p⇡0±
��
0

. Therefore,
in an arbitrary frame with a ⌧± velocity ~v⌧± , we have

~E
||
± = ~E

||
±
��
0

,

~E?
± = �±

h
~E±

��
0

� ~v⌧±⇥ ~B±
��
0

i?
=

E⌧±

m⌧

~E?
±
��
0

, (34)

where ~E
||
± and ~E?

± are the components of ~E± paral-
lel and perpendicular to ~v⌧± , respectively, while �± ⌘
(1 � |~v⌧± |2)�1/2 = E⌧±/m⌧ . An important implication
of (34) is that, for a boosted ⌧± (E⌧±/m⌧ � 1), we get

| ~E?
± | � | ~E||

±|, so ~E± also becomes perpendicular to ~v⌧± .

Thus, the relative magnitudes and orientations of ~E±,
~B±, and ~v⌧± in the boosted ⌧± limit are akin to those of
electromagnetic waves.
To summarize, we write out ~E± and ~B± in the Higgs

rest frame. Since the ⌧± are highly boosted in this frame,

we can neglect E||
±. Then, combining (33) and (34) with

E⌧± = mh/2, we get

~E± =
mh

2

h
(y± � r) ~p⇡±

��
0

� (y± + r) ~p⇡0±
��
0

i?
, (35)
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To measure �, it is necessary to keep the ⌧�⌧+ pair
in the above superpositions of �

1,1 and ��1,�1

, without
projecting the polarizations onto the helicity eigenstates.
From (9) and (10), we see that the coe�cients of �

1,1

and ��1,�1

are the complex conjugates of each other,
which implies that, regardless of �, the probability for
both ⌧� and ⌧+ to be right-handed is always equal to
that for both to be left-handed. Therefore, to distinguish
the two linear combinations in (10), we must measure
the polarizations in the directions perpendicular to the
momenta, as mentioned in item 1 above.

2. ⌧

� ! ⇢

�
⌫⌧

Assuming the SM weak interactions for the ⌧ and ⌫⌧ ,
the most general form of the amplitude for ⌧� ! ⇢� ⌫⌧
is given by

M⌧!⇢⌫ / (✏⇤⇢�)µ ū⌫⌧ �
µPL u⌧� , (11)

with PL ⌘ (1��
5

)/2. Again, Lorentz invariance dictates
that the proportionality factor omitted in (11) has no
momentum dependence.
In the ⌧� rest frame, the amplitude (11) has the form

M⌧!⇢⌫ / ✏⇤⇢� ·
⇣
"�1

sin
✓

2
� "

0

m⌧p
2m⇢

cos
✓

2

⌘
, (12)

where ✓ 2 [0,⇡] is the angle between the ⇢� momen-
tum and the ⌧� polarization in this frame, and "µ�1

, "µ
0

,
and "µ

1

are the polarization vectors for the left-handed,
longitudinal, and right-handed polarizations of the ⇢�,
respectively. Since m2

⌧/(2m
2

⇢) ⇠ 3, the amplitude (12) is
dominated by the second term, roughly speaking. Thus,
we are led to the picture described in the item 2 above,
namely, the ⇢� is predominantly longitudinal (✏⇢� ⇠ "

0

)
and mostly emitted in the direction of the ⌧� polariza-
tion (✓ ⇠ 0).

3. ⇢

� ! ⇡

�
⇡

0

The most general form of the amplitude for ⇢� !
⇡� ⇡0 is given by

M⇢!⇡⇡ / ✏⇢� ·(p⇡� � p⇡0) . (13)

The other linear combination, p⇡� + p⇡0 , cannot appear
here because ✏⇢� ·(p⇡�+ p⇡0) = ✏⇢� · p⇢� = 0. Again, the
proportionality factor omitted in (13) cannot have any
momentum dependence by Lorentz invariance.

Boosting the longitudinal ⇢� to its rest frame, and
neglecting the ⇡±-⇡0 mass di↵erence, the amplitude (13)
takes the form

M⇢!⇡⇡ / |~p⇡�� ~p⇡0| cos , (14)

where  is the angle between the original ⇢� polarization
and the vector ~p⇡� � ~p⇡0 in the rest frame. Therefore,

the momentum di↵erence, ~p⇡� � ~p⇡0 , is roughly (anti-
)parallel ( ⇠ 0 or ⇡) to the original ⇢� polarization, as
we described in the item 3 above.

B. The “electric” and “magnetic” variables

We now analytically compute the full matrix element
for the process (7) to identify the observable that is most
sensitive to the CP phase �. Combining the ampli-
tudes (8), (11) and (13), the full amplitude for the pro-
cess (7) at tree level is given by

M
full

/ ū⌫�(/p⇡�� /p⇡0�)PL (/p⌧�+m⌧ )

⇥ (cos�+ i�
5

sin�)

⇥ (�/p⌧++m⌧ ) (/p⇡+� /p⇡0+)PLv⌫+ , (15)

where ⇡0± refers to the ⇡0 coming from the ⇢± decay, re-
spectively, and we have denoted ⌫⌧ and ⌫̄⌧ as ⌫� and ⌫+,
respectively. The following approximations have been
made above:

• We neglected the diagram in which the two ⇡0 are
exchanged, assuming that we can identify ⇡0± by
looking for a ⇡0 flying near ⇡±, respectively. As
the taus from h ! ⌧+⌧� are highly boosted and
back-to-back in the Higgs rest frame, this should
be an excellent approximation.

• All intermediate particles are assumed to be on-
shell, so the denominators of their propagators have
been dropped in (15), as they are just momentum-
independent constants ⇠ im�.

• We neglect m⇡± � m⇡0 throughout the paper. A
convenient consequence of this (very good) approxi-
mation is that the ⇢⇡⇡ amplitude in (13) e↵ectively
satisfies a “Ward identity”, i.e., it vanishes upon
replacing ✏⇢� with p⇢� :

p⇢� ·(p⇡�� p⇡0�) = m2

⇡± �m2

⇡0 = 0 . (16)

This is why we have dropped the pµp⌫/m
2

⇢ term of
the ⇢± propagators in (15).

Carefully keeping the combinations p⇡± � p⇡0± intact as
suggested by the heuristic analysis of section IIIA, the
amplitude (15) can be rewritten as

M
full

/ ū⌫� q/�
�
ei�/p⌧� � e�i�/p⌧+

�
q/
+

PLv⌫+ , (17)

where

q± ⌘ p⇡± � p⇡0± . (18)

Taking {p⌧± , q±, p⌫±} as the set of independent vari-
ables (subject to the constraint (p⌧+ + p⌧�)2 = m2

h), let
us analyze how the physics depends on these momenta.
First, in the square of the amplitude (17), the variables
q± and p⌫± will only enter via the products q/

+

/p⌫+q/
+

and

with
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measurement. Note, however, that because of the mag-netic field, the softer ⇡± and ⇡0 could be separated atthe ECAL. Even if the two pions overlap in the ECAL,the ⇡0 momentum can be obtained by subtracting thetrack momentum from the total momentum measuredin ECAL, assuming negligible contamination from othersources of energy deposition.
We also neglect the neutral pion combinatoric issue,which is justified if the respective parent rho mesons areboosted far apart as a result of the Higgs decay. In gen-eral, the ⇡± and ⇡0 coming from the same ⇢± parentare mostly collinear. This fact has been exploited inthe hadronic tau tagging algorithm. For example, theHPS algorithm used by CMS requires that the chargedand neutral hadrons are contained in a cone of the size�R = (2.8 GeV/c)/p⌧h

T

, where p⌧h
T

is the transverse mo-mentum of the reconstructed tau [26]. Since the twotau candidates are usually required to be well separated,the combinatorics problem in determining the correct ⇢±parents can be ignored.

A. Truth level
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+
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distribution is larger than that of the acoplanarity angle�⇤ by about 50%. Compared to �⇤, the ⇥ variable thusprovides superior sensitivity to the CP phase �.

Having considered the case where the neutrinos from thetau decays are fully reconstructed, we next turn to thelepton collider environment, where we will find the neu-trinos can be fully reconstructed up to a two-fold ambi-guity.

B. An
e

+
e

� Higgs Factory

At a lepton collider running at
p
s = 250 GeV, such asthe ILC, the main production mode for the Higgs is viaassociated production with a Z boson. Our prescribeddecay mode for the Higgs, h ! ⇡+ ⇡0 ⌫̄ ⇡� ⇡0 ⌫, has two
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nal events assuming � = � in bin i of the ⇥ dis-
tribution. In our ILC treatment, we neglect ZZ and
Z ! ⌧⌧ continuum backgrounds and so we set Bi = 0.
Here, Pois(k|�) is the usual Poisson distribution function,
Pois(k|�) = �ke��/k!.

We parametrize the signal ⇥ distribution with
a c�A cos(⇥� 2�) fit function, where the o↵set con-
stant c and oscillation amplitude A are fixed by the fit
of the standard model ⇥ distribution with � = 0, giving
c
0

and A
0

respectively. Then, the resulting S�=� signal
⇥ distribution is given by c

0

� A
0

cos(⇥ � 2�). We con-
struct the binned likelihood7 according to (38) for vari-
ous � hypotheses to test the discrimination against the
SM hypothesis. With 1 ab�1 of ILC luminosity, we find
1� discrimination at � = 0.077 rad = 4.4�, which is a
highly promising degree of sensitivity for measuring the
CP phase of the Higgs coupling to taus. We summarize
our rate estimate and accuracy result in table I.

We remark that this sensitivity estimate is only driven
by statistical uncertainties, and systematic uncertainties
are expected to reduce the e�cacy of our result. Also,
detector resolution e↵ects and SM backgrounds, while
expected to be small, will also slightly degrade our pro-
jection. Based on our results, which surpass earlier accu-
racy estimates of 6� [18], a full experimental sensitivity
study incorporating these subleading e↵ects is certainly
warranted.

C. LHC

We now develop an LHC study for reconstructing the
⇥ distribution in p p ! h j in the ⇡+⇡0⇡�⇡0 + j + /E

T

final state. We use the h + j final state for a couple of
reasons. First, since hadronic taus can be faked by jets,
pp ! h ! two hadronic taus faces an immense back-
ground from multijet QCD. By requiring another object
in the final state, we gain handles to suppress the back-
ground. Second, the collinear approximation gives am-
biguous results if the two taus are back-to-back, so the
requirement of an additional object in the event guaran-
tees we are away from this configuration. One option is
associated production of a Higgs wit a W/Z. However
this rate is quite small, especially once the branching
ratios for W/Z into clean final states are taken into ac-
count. Other possibilities include Higgs production via
vector boson fusion and in association with a jet. Both
of these options give promising signal-to-background ra-
tios and both should be considered. For concreteness we
will consider pp ! h + j here as a demonstration of the
feasibility of our technique.

As mentioned before, the neutrinos are not recon-
structible in the hadron collider environment, and so we

7 We choose N = 100 bins, though we verified the number of bins
is immaterial for our results.
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FIG. 6: The distributions of the truth-⇥ and ⇥ from the
collinear approximation for � = 0.

will employ the collinear approximation [23] for the neu-
trino momenta. In figure 6, we show a comparison be-
tween the truth level ⇥ distribution and the ⇥ distribu-
tion using the collinear approximation for neutrino mo-
menta, for the � = 0 benchmark. While the collinear
approximation reduces the oscillation amplitude of the
distribution, the location of the minimum of the distri-
bution does not change. Therefore, measuring � is a
viable possibility at the LHC using the collinear approxi-
mation for the neutrino momenta. We remark that in the
collinear approximation, ⇥ is equivalent to the acopla-
narity angle �⇤ [15, 16]. Yet, we are the first feasibility
study for measuring CP violation in the Higgs coupling
to taus at hadron colliders using prompt tau decays and
kinematics. With a more sophisticated scheme than the
collinear approximation, the ⇥ variable will be superior
to �⇤.

At the LHC, the dominant background for the h j sig-
nal process is the irreducible Z j background, where the
Z decays to the same final state as the higgs. As shown
earlier in figure 2, the ⇥ distribution from Z events is
flat: importantly, this is true regardless of possible mass
window cuts on the reconstructed m⌧⌧ resonance. We
remark that the CP phase in the Higgs coupling to taus
does manifest in the Z–⌧–⌧ vertex at one loop. Since this
e↵ect is suppressed by ⇠ y2⌧/(16⇡

2) ⇠ O(10�4), whereas
the signal to background ratio will be O(60%), we can
safely ignore the loop induced CP phase in the Z–⌧–⌧
vertex. In addition, we will assume that the QCD back-
ground contribution also has a flat ⇥ distribution, since
the QCD contamination in the signal region is not ex-
pected to have any particular spin correlations.
Using our h j and Z j event samples from MadGraph 5

for a 14 TeV LHC, we first isolate the signal region with a
series of hard cuts. First, we apply a preselection require-
ment on the leading jet p

T

> 140 GeV with |⌘| < 2.5.
Using MCFM v.6.6 [28] with these preselection require-
ments on the leading jet, we obtain a h j NLO inclusive

LHC
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will employ the collinear approximation [23] for the neu-
trino momenta. In figure 6, we show a comparison be-
tween the truth level ⇥ distribution and the ⇥ distribu-
tion using the collinear approximation for neutrino mo-
menta, for the � = 0 benchmark. While the collinear
approximation reduces the oscillation amplitude of the
distribution, the location of the minimum of the distri-
bution does not change. Therefore, measuring � is a
viable possibility at the LHC using the collinear approxi-
mation for the neutrino momenta. We remark that in the
collinear approximation, ⇥ is equivalent to the acopla-
narity angle �⇤ [15, 16]. Yet, we are the first feasibility
study for measuring CP violation in the Higgs coupling
to taus at hadron colliders using prompt tau decays and
kinematics. With a more sophisticated scheme than the
collinear approximation, the ⇥ variable will be superior
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At the LHC, the dominant background for the h j sig-
nal process is the irreducible Z j background, where the
Z decays to the same final state as the higgs. As shown
earlier in figure 2, the ⇥ distribution from Z events is
flat: importantly, this is true regardless of possible mass
window cuts on the reconstructed m⌧⌧ resonance. We
remark that the CP phase in the Higgs coupling to taus
does manifest in the Z–⌧–⌧ vertex at one loop. Since this
e↵ect is suppressed by ⇠ y2⌧/(16⇡

2) ⇠ O(10�4), whereas
the signal to background ratio will be O(60%), we can
safely ignore the loop induced CP phase in the Z–⌧–⌧
vertex. In addition, we will assume that the QCD back-
ground contribution also has a flat ⇥ distribution, since
the QCD contamination in the signal region is not ex-
pected to have any particular spin correlations.
Using our h j and Z j event samples from MadGraph 5

for a 14 TeV LHC, we first isolate the signal region with a
series of hard cuts. First, we apply a preselection require-
ment on the leading jet p

T

> 140 GeV with |⌘| < 2.5.
Using MCFM v.6.6 [28] with these preselection require-
ments on the leading jet, we obtain a h j NLO inclusive
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h

j

Z

j

Inclusive
� 2.0 pb 420 pb

Br(
⌧

+
⌧

� decay) 6.1% 3.4%
Br(

⌧

� !
⇡

�
⇡

0
⌫) 26% 26%

Cut e�ciency 18% 0.24%
Nevents 1100 1800

TABLE II: Cross sections, branching fractions, cut e�cien-cies, and expected number of events assuming 3 ab�1 and50%
⌧ tagging e�ciency for the Higgs signal and the

Z back-ground: the background number of events includes an addi-tional 10% contribution from QCD multijet background.

cross section of 2.0 pb with mh = 126 GeV and a Z jNLO inclusive cross section of 420 pb. After applyingthe appropriate Higgs, Z, and tau branching fractions,we calculate a signal cross section of 8.2 fb and Z back-ground cross section of 970 fb.8 Next, we impose hardkinematic cuts to isolate the signal. Motivated by [11],we choose the signal region to be:
• /E

T

> 40 GeV,

• p⇢
±

T

> 45 GeV,

• |⌘⇢±| < 2.1,

• m
c

o

l

l

> 120 GeV,

where m
c

o

l

l

is the reconstructed Higgs mass by using thecollinear approximation. The hard m
c

o

l

l

cut stronglysuppresses the Z + j background, but is less e↵ectiveon multijet QCD. To reduce the multijet component –and its accompanying uncertainty – to less than 10% ofthe total background we impose a high /E
T

cut. The nete�ciencies for signal and Z background after these cutsare 18% and 0.24%, respectively. Rather than simulatethe QCD contribution, we account for QCD contamina-tion in the signal region by increasing the Z backgroundrate by 10%: a complete treatment of the expected QCDbackground is beyond the scope of this study. Finally, forhadronic ⌧ tagging e�ciency, we consider a standard 50%e�ciency and a more optimistic 70% e�ciency [26]. Wetherefore expect 1100 signal events and 1800 Z+ QCDbackground events with 3 ab�
1 of luminosity from the14 TeV LHC, assuming 50% ⌧ tagging e�ciency. Theserates are summarized in table II.

We note that although we generated signal and back-ground samples independently, there is a small interfer-ence between Higgs and Z diagrams in the gq ! ⌧+⌧�q

8 These numbers were generated using CTEQ6M parton dis-tribution functions. For the signal we use a factoriza-tion/renormalization scale of µF = mH/2, while for the back-ground we use µF =
q

M2
Z + p2T,j . These scale choices are

motivated by agreement with higher order (NNLO) calculations(where they exist).

⌧h e�ciency 50% 70%
3
�

L = 550 fb�1
L = 300 fb�1

5
�

L = 1500 fb�1
L = 700 fb�1

Accuracy(
L = 3 ab�1) 11

.5� 8
.0�

TABLE III: The luminosity required for distinguishing thescalar and pseudoscalar couplings and the accuracy in mea-suring � with 3 ab�1 of luminosity at the 14 TeV LHC.

diagram. Our checks of this interference on the ⇥ distri-butions for combined signal and background events ver-sus separate signal and background events showed a neg-ligible e↵ect: we thus ignore this interference e↵ect.We now perform a likelihood analysis (38) to quantifyhow e↵ectively the ⇥ distribution distinguishes betweensignal hypotheses with di↵erent CP phases in the pres-ence of Z+ QCD background. First, we test the discrim-ination between a pure scalar and a pure pseudoscalarh–⌧–⌧ coupling. We find that these two hypotheses canbe distinguished at 3� sensitivity with 550 (300) fb�
1

assuming 50% (70%) ⌧ tagging e�ciency. We can at-tain 5� sensitivity between pure scalar and pseudoscalarcouplings with 1500 (700) fb�
1 luminosity assuming 50%(70%) e�ciency.

We also estimate the possible accuracy for the LHCexperiments to measure � with an upgraded luminosityof 3 ab�
1. We adopt the same procedure as with theILC accuracy estimate described in the previous section,modified to account for the Z+ QCD background, whichis fixed to be flat in ⇥. We find that the accuracy in mea-suring � is 11.5� (8.0�) assuming 50% (70%) hadronic ⌧tagging e�ciency. The scalar versus pseudoscalar dis-crimination and the accuracy estimates are summarizedin table III.

Again, these estimates are based only on statisticaluncertainties without performing a full detector simula-tion. The e↵ects from pileup and detector resolution areexpected to degrade these projections, but correspond-ing improvements in the analysis, such as a more pre-cise approximation for the neutrino momenta, improvedbackground understanding (from other LHC measure-ments) or multivariate techniques, could counterbalancethe decrease in sensitivity. The promising results of ourstudy strongly motivate a comprehensive analysis by theLHC experiments for the prospect of measuring the CPphase �.

V. CONCLUSIONS

Higgs decays to tau leptons provide a singular opportu-nity to measure the CP properties of the Higgs-fermioncouplings. In this paper, we have studied the decay ofh ! ⌧+⌧� followed by ⌧± ! (⇢± ! ⇡±⇡0) ⌫. A new ob-servable, ⇥, was constructed in (36) using the momentaof the tau decay products. The di↵erential cross section

Promising accuracy:
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FIG. 4: The truth and reconstructed ⇥ distributions at the
ILC for � = 0.

neutrinos that escape the detector. We use the known ini-
tial four momenta, two tau mass and two neutrino mass
constraints to solve for each neutrino momentum compo-
nent. Note we will assume the Z decays to visible states,
which will reduce our event yield by 20%. Solving the
system of equations for the neutrino momenta gives rise
to a two-fold ambiguity, where one solution is equal to
the truth input neutrino momenta while the other gives a
set of wrong neutrino momenta. Note both solutions are
consistent with four-momentum conservation and there-
fore correctly reconstruct the Higgs mass. Since these
solutions are indistinguishable in the analysis, we assign
each solution half an event weight.

The resulting distribution of ⇥ for � = 0 is given in
figure 4, where we superimpose the truth level ⇥ distri-
bution for e+e� ! Zh events for easy comparison. We
can see that the oscillation amplitude at the ILC is de-
graded from the truth level result by ⇠ 30%. We also
show the reconstructed distribution for � = 0, � = ⇡/4,
and � = ⇡/2 in figure 5. While the two-fold ambiguity
for the neutrino momenta solution set does degrade the
truth level result, the reconstructable ⇥ distribution in
figure 5 shows significant discrimination power between
various � signal models. Note the amplitude of pseu-
doscalar distribution (� = ⇡/2) is slightly higher than
the scalar amplitude: here, the “wrong solution” approx-
imates the correct neutrino momenta on average better
than the other � = 0 or � = ⇡/4 cases. This small ef-
fect can be traced back to equation (9) where we derived
that a pseudoscalar decays to two taus in the singlet spin
state. As a result, in this case the two tau spins point
in opposite directions, regardless of the spin quantization
axis. In the pseudoscalar case the two tau decays thus
tend to occur with opposite orientation and the two neu-
trinos are slightly more back-to-back and consequently
the two solutions for their momenta are closer together.
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FIG. 5: The reconstructed ⇥ distribution at the ILC for
� = 0, � = ⇡/4, and � = ⇡/2.

�e+e�!hZ 0.30 pb

Br(h ! ⌧

+
⌧

�) 6.1%

Br(⌧� ! ⇡

�
⇡

0
⌫) 26%

Br(Z ! visibles) 80%

Nevents 990

Accuracy 4.4�

TABLE I: Cross section, branching fractions, expected num-
ber of signal events, and accuracy for measuring � for the
ILC with

p
s = 250 GeV and 1 ab�1 integrated luminosity.

We now discuss the projected ILC sensitivity for mea-
suring �. At the ILC, the cross section for Zh produc-
tion at

p
s = 250 GeV with polarized beams P (e�, e+) =

(�0.8, 0.3) for mh = 125 GeV is 0.30 pb [27].6 Assum-
ing a Higgs branching fraction to tau pairs of 6.1%, a
⌧� ! ⇢�⌫ ! ⇡�⇡0⌫ branching fraction of 26%, and a
Z-to-visible branching fraction of 80%, we calculate the
ILC should have 990 events with 1 ab�1 of luminosity.
Since the solved neutrino momenta correctly reconstruct
the Higgs mass, the ZZ backgrounds are negligible and
will be ignored.
To estimate the expected ILC accuracy for measuring

�, we perform a log likelihood ratio test for the SM hy-
pothesis with � = 0 against an alternative hypothesis
with � = �. In general, the likelihood ratio in N bins is
given by

L =

NQ
i=1

Pois
�
Bi + S�=0

i |Bi + S�=�
i

�

NQ
i=1

Pois
�
Bi + S�=0

i |Bi + S�=0

i

� , (38)

where Bi, S�=0

i and S�=�
i are the number of back-

ground events, signal events assuming � = 0, and sig-

6 We have checked the ⇥ distribution is insensitive to the polar-
ization of the e�-e+ beams.
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will be ignored.
To estimate the expected ILC accuracy for measuring
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given by
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where Bi, S�=0

i and S�=�
i are the number of back-

ground events, signal events assuming � = 0, and sig-

6 We have checked the ⇥ distribution is insensitive to the polar-
ization of the e�-e+ beams.


