LFV Higgs and Other Rare Decays

Roni Harnik, Fermilab

KEK-PH 2014

 $(h \rightarrow 4\ell)$

- * RH, Kopp, Zupan 1209.1397
- * Chen, RH, Vega-Morales 1404.1336 and work in progress.
- * RH, Martin, Okui, Primulando, Yu 1308.1094

Higgs - a new toy!

* We have discovered a Higgs! New particle!

* We're excited like kids that got a new toy.

Higgs - a new toy!

* We have discovered a Higgs! New particle!

* We're excited like kids that got a new toy.

Higgs - a new toy!

* We have discovered a Higgs! New particle!

Outline:

- * Higgs Coupling to Gauge Bosons:
 - $h \rightarrow 4l. (not h \rightarrow ZZ^*!)$
 - Can it probe hyp? hyZ?
- * Higgs Couplings to Fermions: Flavor!
 - Higgs FV Theory
 - o Limits
 - Colin's talk $(h \rightarrow \tau \mu)$.

A theory epilogue for talks by Xie and Whitbeck

A theory introduction for the next talk.

Higgs Couplings to Gauge Bosons:

Opportunities in $h \rightarrow 4l$.

 $h \rightarrow 4l$

* The decay $h \rightarrow 4\ell$ was vitally important in discovering the Higgs. Determining its mass.

- Very clean.
- · Many things to measure.
- What else can it do for us?

 $\rightarrow 4\ell$

- * The search was optimized for discovery via ZZ*.
- * $h \rightarrow 4l$ is not only $ZZ^*!$
- * I'm advocating: include sy and Zy.

Signal and Background

Our mindset in 2012:

 $=\frac{h}{4v}\left(2m_z^2A_1^{zz}Z_\mu Z^\mu\right)$ Signal $+ A_{2}^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_{3}^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$ too small ... + $A_2^{\gamma\gamma} F_{\mu\nu} F^{\mu\nu}$ + $A_3^{\gamma\gamma} F_{\mu\nu} \tilde{F}^{\mu\nu}$ $+2A_{2}^{zv}Z_{\mu\nu}F^{\mu\nu}+2A_{3}^{zv}Z_{\mu\nu}\tilde{F}^{\mu\nu})$

Signal and Background Our mindset in 2012: 2014 and beyond:

 $\mathscr{A} = \frac{h}{4v} \left(2m_z^2 A_1^{zz} Z_\mu Z^\mu \right)$ Signal $+ A_{2}^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_{3}^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$ too small... + $A_2^{\gamma\gamma} F_{\mu\nu} F^{\mu\nu}$ + $A_3^{\gamma\gamma} F_{\mu\nu} \tilde{F}^{\mu\nu}$ $+2A_{2}^{zv}Z_{\mu\nu}F^{\mu\nu}+2A_{3}^{zv}Z_{\mu\nu}\tilde{F}^{\mu\nu})$

Signal and Background Our mindset in 2012: 2014 and beyond: $\mathscr{I} = \frac{h}{4v} \left(2m_z^2 A_1^{zz} Z_\mu Z^\mu \right) \frac{Background!}{Signal}$ $+ A_{2}^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_{3}^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$ too small... + $A_2^{\gamma\gamma} F_{\mu\nu} F^{\mu\nu}$ + $A_3^{\gamma\gamma} F_{\mu\nu} \tilde{F}^{\mu\nu}$ $+2A_{2}^{z\nu}Z_{\mu\nu}F^{\mu\nu}+2A_{3}^{z\nu}Z_{\mu\nu}\tilde{F}^{\mu\nu})$

Signal and Background Our mindset in 2012: 2014 and beyond:

 $\mathscr{I} = \frac{h}{4v} \left(2m_z^2 A_1^{zz} Z_\mu Z^\mu \right) \frac{Background!}{Signal}$ $+ A_{2}^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_{3}^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$ small... + $A_2^{\gamma\gamma} F_{\mu\nu} F^{\mu\nu}$ + $A_3^{\gamma\gamma} F_{\mu\nu} \tilde{F}^{\mu\nu}$ Signal! $+2A_{2}^{zv}Z_{\mu\nu}F^{\mu\nu}+2A_{3}^{zv}Z_{\mu\nu}\tilde{F}^{\mu\nu})$

Signal and Background Our mindset in 2012: 2014 and beyond: $=\frac{h}{4v}\left(2m_z^2A_1^{zz}Z_{\mu}Z^{\mu}\right)\frac{Background!}{Signal}$ $+ A_{2}^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_{3}^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$ o small... $+ A^{\ast}$ Intuition: Signal! +2A² We expect to be most sensitive to the signal that is most different from BG.

Motivation

- * Why look for Zx and xx in four leptons? Isn't it clear we will loose to direct searches?
 - Yes, but interference = Sensitivity to CPV and signs.
 - Many observables = discriminating power.
 - Interference gives 4l a head start. e.g., $A_2^{Z_8}$'s effect the rate like

Y. Chen, N. Tran, and R. Vega-Morales, 1211.1959 Y. Chen and R. Vega-Morales, 1310.2893 Earlier MEM work by Ian Low et al.

> a.k.a. method #7 in Xie's talk from monday.

Method

* A simple procedure:

- Calculate the fully differential cross section analytically*.
- A big function of (Az, Az, Az, Az, Az, Az, Az, Az) & phase space.
- Fit to the data. Extract A's directly.
- * Keeps all operators simultaneously. No hypothesis testing, etc.

*Done in a heroic effort by youngsters Chen and Vega-Morales.

Results

Results

Results

Part I: Summary

- * $h \rightarrow 4l$ is powerful!
- * Can do much more than discover the Higgs!
- * Probe CPV and sign of hyr.
- * Ongoing: we are optimizing the m1-m2 cuts. Preliminary: hZy couplings are within reach!

My son, \rightarrow Testing both flavor and time reversal properties of QFT.

hff Couplings

* SM: the Higgs is the only source of mass. It defines the fermion mass basis.

→ Yukawa couplings are flavor diagonal.

* New physics can mean new sources of mass. In the presence of such NP we can have-

* Recipe: CPV/FV Higgs

1. Rip a page from a paper that modifies Higgs couplings.

2. Sprinkle flavor indices and phases all over the place.

3. Re-diagonalize mass matrix.

* Recipe: CPV/FV Higgs

1. Rip a page from a paper that modifies Higgs couplings.

2. Sprinkle flavor indices and phases all over the place.

3. Re-diagonalize mass matrix.

 $\mathcal{L} = \lambda Hf_{f_{1}}f_{f_{2}} + \lambda' \frac{H^{3}}{\Lambda^{2}}f_{f_{1}}f_{f_{2}}$ $m_f = (\lambda + \frac{v^2}{\Lambda^2} \lambda') v$ $Y_{f} = \lambda + 3 \frac{v^{2}}{\Lambda^{2}} \lambda'$

* Recipe: CPV/FV Higgs

1. Rip a page from a paper that modifies Higgs couplings.

2. Sprinkle flavor indices and phases all over the place.

3. Re-diagonalize mass matrix.

 $\mathcal{L} = \lambda H f_{f} f_{f} + \lambda' \frac{H^{s}}{\Lambda^{2}} f_{f} f_{g}$ $m_f = (\lambda + \frac{v^2}{\Lambda^2} \lambda') v$ $Y_{f} = \lambda + 3 \frac{v^{2}}{\Lambda^{2}} \lambda'$

 $Y_f \neq \frac{m_f}{v}$

* Recipe: CPV/FV Higgs

1. Rip a page from a paper that modifies Higgs couplings.

2. Sprinkle flavor indices and phases all over the place.

3. Re-diagonalize mass matrix.

 $\mathcal{L} = \lambda_{ij} H f_i^{i} f_j^{j} + \lambda_{ij}^{\prime} \frac{H^3}{\Lambda^2} f_i^{j} f_j^{j}$ $m_f = \left(\lambda_1 + \frac{v^2}{\Lambda^2} \lambda_1'\right) v$ $Y_f = \lambda_{ij} + 3 \frac{v^2}{\Lambda^2} \lambda'_{ij}$

 $Y_{f} \neq \frac{m_{f}}{v}$ and not diagonal.

* Recipe: CPV/FV Higgs

1. Rip a page from a paper that modifies Higgs couplings.

2. Sprinkle flavor indices and phases all over the place.

3. Re-diagonalize mass matrix.

 $\mathcal{L} = \lambda_{ij} H f_{l}^{i} f_{p}^{j} + \lambda_{ij}^{\prime} \frac{H^{3}}{\Lambda^{2}} f_{l}^{i} f_{p}^{j}$ $m_f = \left(\lambda_1 + \frac{v^2}{\Lambda^2} \lambda_1'\right) v$ $Y_f = \lambda_{ij} + 3 \frac{v^2}{\Lambda^2} \lambda'_{ij}$

 $Y_{f} \neq \frac{m_{f}}{V}$ and not diagonal.

 $Y_{ij} \leq (m_i m_j)^{1/2}$ is natural.

Leptonic Flavor Violation

 $\mathcal{L}_Y \supset -Y_{e\mu}\bar{e}_L\mu_Rh - Y_{\mu e}\bar{\mu}_L e_Rh - Y_{e\tau}\bar{e}_L\tau_Rh - Y_{\tau e}\bar{\tau}_L e_Rh - Y_{\mu\tau}\bar{\mu}_L\tau_Rh - Y_{\tau\mu}\bar{\tau}_L\mu_Rh + h.c.$

Which experiments constrain the Yij's?

RH, Kopp, Zupan 1209.1397

FV Higgs constraints

Higgs couplings to pe

Outside of LHC reach.

Probing "natural" models.

Will be dominated by µZe & COMET

Higgs couplings to pr

LHC wins!

(see an update in the next talk!!)

Theorist's lame reinterpretation of h→cc beats c→µg!

"natural models" are within reach.

RH, Kopp, Zupan 1209.1397

Higgs couplings to re

* re is similar to rp, but without CMS bound and ...

Higgs couplings to re

* re is similar to rp, but without CMS bound and ...

Flavor and CP Probes:

<u>Flavor violation:</u> $v = \text{sensitive at the level of} \quad Y_{ij} \lesssim \frac{\sqrt{m_i m_j}}{m_j}$

Leptons	Probe	d-quarks	Probe	u-quarks	Probe
μ-е	muons	s-d	K-K 🗸	С-И	D-D V
τ-е	eEDM*	b-d	B-B 🗸	t-u	nEDM*∨
τ-μ	LHC _v	b-s	B _s -B _s	t-c	LHC / D-D

*LHC, if CP is conserved.

<u>CP violation:</u>

Phase	Probe	Phase	Probe
е	e-EDM	t	EDMs
u,d	nEDM	τ	LHC / Higgs factory
γ	eEDM	W/Z	LHC

Multiple probes! Many experiments! Almost all channels are sensitive at well Motivated levels!

Conclusion

- * The Higgs is a new toy! Lets Explore it!
- * Flavor conservation can't be taken for granted. Should be tested without theoretical prejudice.
- * $h \rightarrow \tau \mu$ is a promising opportunity for LHC.

* $h \rightarrow 4l$ is more exciting than an iPhone!

Conclusion

- * The Higgs is a new toy! Lets Explore it!
- * Flavor conservation can't be taken for granted. Should be tested without theoretical prejudice.
- * $h \rightarrow \tau \mu$ is a promising opportunity for LHC.

* $h \rightarrow 4l$ is more exciting than an iPhone!

Deleted Scenes

Signal 2I2I'

Signal 4I

×10⁻⁹

Signal 2l2l'

Signal 4I ×10⁻⁹ <u>چ</u> 99ج 0.5 50 0.4 40 0.3 30 0.2 20 0.1 10 0<u></u> 0 120 M₁^(A) 20 100 40 60 80

 A_3^{ZZ}

Signal 2121'

 A_{z}^{ZA}

"Wrong Pair"

- * These cuts were optimized to discover the Higgs. Motivated by ZZ*.
- * But accidentally, they have good efficiency for $\gamma^*\gamma^*$ in the 4e and 4µ channel! :-)

"Wrong Pair"

- * These cuts were optimized to discover the Higgs. Motivated by ZZ*.
- * But accidentally, they have good efficiency for $\gamma^*\gamma^*$ in the 4e and 4µ channel! :-)

"Wrong Pair"

* These cuts were optimized to discover the Higgs. Motivated by ZZ*.

e+

* But accidentally, they have good efficiency for $\gamma^*\gamma^*$ in the 4e and 4µ channel! :-)

"Wrong Pair"

- * These cuts were optimized to discover the Higgs. Motivated by ZZ*.
- * But accidentally, they have good efficiency for $\gamma^*\gamma^*$ in the 4e and 4µ channel! :-)

For completeness:

Meson Mixing

* Meson mixing's powerful:

Technique	Coupling	Constraint	$m_i m_j / v^2$
D^0 oscillations [48]	$ Y_{uc} ^2, Y_{cu} ^2$	$< 5.0 \times 10^{-9}$	5x10-8
	$ Y_{uc}Y_{cu} $	$<7.5\times10^{-10}$	
B_d^0 oscillations [48]	$ Y_{db} ^2, Y_{bd} ^2$	$<2.3\times10^{-8}$	3×10-7
	$\left Y_{db}Y_{bd} ight $	$< 3.3 \times 10^{-9}$	
B_s^0 oscillations [48]	$ Y_{sb} ^2, Y_{bs} ^2$	$< 1.8 \times 10^{-6}$	
	$ Y_{sb}Y_{bs} $	$<2.5\times10^{-7}$	7×10-6
K^0 oscillations [48]	$\operatorname{Re}(Y_{ds}^2), \operatorname{Re}(Y_{sd}^2)$	$[-5.9\dots 5.6] \times 10^{-10}$	
	$\operatorname{Im}(Y_{ds}^2), \operatorname{Im}(Y_{sd}^2)$	$[-2.91.6] \times 10^{-12}$	8x10 -9
	$\operatorname{Re}(Y_{ds}^*Y_{sd})$	$[-5.6\dots 5.6] \times 10^{-11}$	
	$\mathrm{Im}(Y_{ds}^*Y_{sd})$	$[-1.4\dots 2.8] \times 10^{-13}$	

"Natural" models are constrained!

FV Couplings with top

* A variety of techniques: Technique Coupling Constraint M_iM_j/N $\sqrt{|Y_{tc}^2| + |Y_{ct}|^2}$ < 0.34 3×10^{-3} $t \rightarrow hj$ $\sqrt{|Y_{tu}^2| + |Y_{ut}|^2}$ < 0.347×10-6 [Craig et al. 1207.6794] $<7.6\times10^{-3}$ $|Y_{ut}Y_{ct}|, |Y_{tu}Y_{tc}|$ 2×10-4 D^0 oscillations $< 2.2 \times 10^{-3}$ $|Y_{tu}Y_{ct}|, |Y_{ut}Y_{tc}|$ $|Y_{ut}Y_{tu}Y_{ct}Y_{tc}|^{1/2}$ $< 0.9 \times 10^{-3}$ $< 4.4 \times 10^{-8}$ $\operatorname{Im}(Y_{ut}Y_{tu})$ neutron EDM 7×10-6

FV Couplings with top

Technique Coupling Constraint $m_i m_j / v'$ $\sqrt{|Y_{tc}^2| + |Y_{ct}|^2}$ < 0.34 3×10^{-3} $t \rightarrow hj$ $\sqrt{|Y_{tu}^2| + |Y_{ut}|^2}$ < 0.347×10-6 Craig et al. 1207.6794] $< 7.6 \times 10^{-3}$ $|Y_{ut}Y_{ct}|, |Y_{tu}Y_{tc}|$ 2×10-4 $< 2.2 \times 10^{-3}$ D^0 oscillations $|Y_{tu}Y_{ct}|, |Y_{ut}Y_{tc}|$ $|Y_{ut}Y_{tu}Y_{ct}Y_{tc}|^{1/2}$ $< 0.9 \times 10^{-3}$ neutron EDM $< 4.4 \times 10^{-8}$ $\operatorname{Im}(Y_{ut}Y_{tu})$ 7×10⁻⁶

* A variety of techniques:

FV Couplings with top

* A variety of techniques:

Technique Coupling Constraint $m_i m_j / v'$ $\sqrt{|Y_{tc}^2| + |Y_{ct}|^2}$ < 0.34 $3x10^{-3}$ $t \rightarrow hj$ $\sqrt{|Y_{tu}^2| + |Y_{ut}|^2}$ < 0.347x10-6 [Craig et al. 1207.6794] $< 7.6 \times 10^{-3}$ $|Y_{ut}Y_{ct}|, |Y_{tu}Y_{tc}|$ 2×10-4 $< 2.2 \times 10^{-3}$ D^0 oscillations $|Y_{tu}Y_{ct}|, |Y_{ut}Y_{tc}|$ $|Y_{ut}Y_{tu}Y_{ct}Y_{tc}|^{1/2}$ $< 0.9 \times 10^{-3}$ $< 4.4 \times 10^{-8}$ neutron EDM $\operatorname{Im}(Y_{ut}Y_{tu})$ 7×10-6 neutron EDM: h* Improvements: $t + (h -> \gamma \gamma) : Y_{tj} < 0.17 (!)$ \mathcal{U} (ATLAS-CONF-2013-081) powerful !!!

Higgs couplings to th 19.7 fb⁻¹, $\sqrt{s} = 8$ TeV **CMS preliminary** ۲ ۲ ۲ τ**→ 3**μ LHC h > the gives dominant bound. **10**⁻¹ CMS: A 2.50 excess. LHC h 10⁻² observed right around $y_{\tau\mu} \sim (y_{\tau} \cdot y_{\mu})^{1/2}$ expected h→μτ 10⁻³ BR<0.1% **BR<10%** Waiting for ATLAS ... 10⁻⁴ 10^{-3} **10**⁻⁴ 10⁻² **10**⁻¹ RH, Kopp, Zupan 1209.1397 μτ

& CMS

hVV: Measurements

* We already have some searches for our signal:

$$\begin{split} \checkmark &= \frac{h}{4\nu} \left(2m_z^2 A_{11}^{ZZ} Z_{\mu} Z^{\mu} + A_{22}^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_{33}^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} + A_{22}^{XZ} Z_{\mu\nu} F^{\mu\nu} + A_{33}^{XY} F_{\mu\nu} \tilde{F}^{\mu\nu} + 2A_{22}^{ZY} Z_{\mu\nu} F^{\mu\nu} + 2A_{33}^{ZY} Z_{\mu\nu} \tilde{F}^{\mu\nu} \right) \end{split}$$

hVV: Measurements

* We already have some searches for our signal:

 $\mathscr{I} = \frac{h}{4\nu} \left(2m_z^2 A_1^{ZZ} Z_\mu Z^\mu \right)$ $+ A_{2}^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_{3}^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$

hVV: Measurements

* We already have some searches for our signal:

 $=\frac{h}{4v}\left(2m_z^2A_1^{zz}Z_{\mu}Z^{\mu}\right)$ $h \rightarrow 4l:$ for $Z^{\mu\nu} + A_3^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$ scalar vs. pseudoscalar. (Hypothesis test). Generated experiments 3000 Ħ SM, 0+ 2500 Scalar 0-2000 CMS data preferred This is not the way to go 1500 1000 @ 30 forward with this search! 500 (CMS already started this change) -20 10 20 -10 0 $-2 \times \ln(L_{0^{-}}/L_{0^{+}})$

hVV: Measurements

* We have some measurements of A's:

$$= \frac{h}{4\nu} \left(2m_z^2 A_{11}^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_{23}^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} + A_{22}^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_{33}^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} + A_{22}^{XY} F_{\mu\nu} F^{\mu\nu} + A_{33}^{YY} F_{\mu\nu} \tilde{F}^{\mu\nu} + 2A_{22}^{ZY} Z_{\mu\nu} F^{\mu\nu} + 2A_{33}^{ZY} Z_{\mu\nu} \tilde{F}^{\mu\nu} \right)$$

hVV: Measurements

* We have some measurements of A's:

 $\mathscr{A} = \frac{h}{4\nu} \left(2m_z^2 A_1^{ZZ} Z_\mu Z^\mu \right)$ + $A_2^{\gamma\gamma} F_{\mu\nu} F^{\mu\nu}$ + $A_3^{\gamma\gamma} F_{\mu\nu} \tilde{F}^{\mu\nu}$

hVV: Measurements

* We have some measurements of A's:

LHC $h \rightarrow \gamma \gamma$ rate (assuming standard production): $|A_2^{\gamma \gamma}|^2 + |A_3^{\gamma \gamma}|^2 \sim SM$ value

hVV: Measurements

- * The SM-like rate to 4l + "scalar evidence" imply that the Higgs is SM-like.
- * It is worth emphasizing what we do not know:
 - · Don't know the sign of the hyp vertex.
 - Don't know its phase w/o assumptions.
 - Constraints on Zy and ZZ high-dim operators are very poor, and will remain so for a while.

Can the golden channel shed light on the small dim-5 operators? which ones?

Phase Space

- * The relevant phase space for $h \rightarrow 4l$ can be written as:
 - two invariant masses of lepton pairs, m1 and m2.
 - two opening angles.
 - a relative azimuthal angle.
- * All other variables are the boost to the Higgs rest frame, and overall rotation. l1

l2

m and m2

- * For now, we adopt the CMS convention for picking m1 and m2:
 - O Same flavor pairs.
 - Always pick m1>m2
 - For 4e and 4µ: pick mi to be closest to the Z mass.
- * We also employ CMS-like cuts:
 - $p_{T\ell} > 20, 10, 7, 7$ GeV for lepton p_T ordering,
 - $|\eta_{\ell}| < 2.4$ for the lepton rapidity,
 - 40 GeV $\leq M_1$ and 12 GeV $\leq M_2$.

Lesson from Shapes

- * Not surprisingly: the **xx** shapes are most different from background (recall: BG= A1).
- * Zy is next.
- * Interesting pair selection effects in xx 4e/4µ. There is room for optimization! (more later)

Optimization

Optimization

- * The cuts on m1 and m2 had ZZ* in mind.
- * We can relax them! (or pick "wrong pairings" on purpose..)

Optimization

- * The cuts on m1 and m2 had ZZ* in mind.
- * We can relax them! (or pick "wrong pairings" on purpose..)

• We can reach SM values of hor by the end of run2!

- We can reach SM values for Z_{γ} ! Perhaps compete with on-shell $h \rightarrow Z_{\gamma}$
- * Everything hinges on what happens when we include non-Higgs background.

What about CP violation?

$$\mathcal{L}_{CPV} = \frac{m_i}{v} h \,\overline{f_i} (\cos \Delta + i \sin \Delta \gamma_5) f_i$$

For τ 's, the phase Δ is un-constrained!

How can LHC probe CPV in h→ττ? RH, Martin, Okui, Primulando, Yu 1308.1094

Polarizers

$$\begin{array}{|c|c|} \hline \text{Counts vs relative polarization angle, } \phi: \\ \hline \left| \left(\langle +|+\langle -| \rangle_1 \otimes \left(e^{-i\phi} \langle +|+e^{+i\phi} \langle -| \rangle_2 \left(e^{+i\Delta}|++\rangle + e^{-i\Delta}|--\rangle \right) \right|^2 \right| \end{array} \right| \\ \end{array}$$

Summary

- * Its time to probe the Higgs beyond rates. Today's examples:
 - Flavor violating Higgs decay. 2.5 σ excess in $h \rightarrow \tau \mu$.
 - O CP violation in h→rr. Polarization measurements.
 - CP properties of hyp. Golden channel!
- * The decay $h \rightarrow 4l$ can be a complementary probe of the hZy coupling.
Deleted Scenes

Real World

* Unfortunately we don't have polarizers for τ's. But they decay!

* An optimized "polarizer" (using v knowledge):

$$\frac{m_h}{2} \left[(y_{\pm} - r) \, \vec{p}_{\pi^{\pm}} \Big|_0 - (y_{\pm} + r) \, \vec{p}_{\pi^{0\pm}} \Big|_0 \right]^{\perp}$$
with
$$\begin{cases}
q_{\pm} \equiv p_{\pi^{\pm}} - p_{\pi^{0\pm}} \\
y_{\pm} \equiv \frac{2q_{\pm} \cdot p_{\tau^{\pm}}}{m_{\tau}^2 + m_{\rho}^2} = \frac{q_{\pm} \cdot p_{\tau^{\pm}}}{p_{\rho^{\pm}} \cdot p_{\tau^{\pm}}}, \\
r \equiv \frac{m_{\rho}^2 - 4m_{\pi}^2}{m_{\tau}^2 + m_{\tau}^2} \approx 0.14.
\end{cases}$$

Real World

* Unfortunately we don't have polarizers for τ's. But they decay!

 $\star \pi^0$

* An optimized "polari

$$\frac{m_h}{2} \left[\left(y_{\pm} - r \right) \vec{p}_{\pi^{\pm}} \right]_0 - \left(i \right]$$

"pion-plane" correlated with z polarization.

LHC

* Using collinear approximation, we form an LHC observable:

LHC

* Using collinear approximation, we form an LHC observable:

Higgs Factory

TABLE I: Cross section, branching fractions, expected number of signal events, and accuracy for measuring Δ for the ILC with $\sqrt{s} = 250$ GeV and 1 ab⁻¹ integrated luminosity.