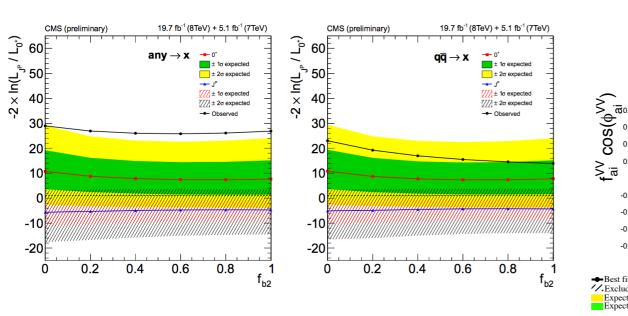
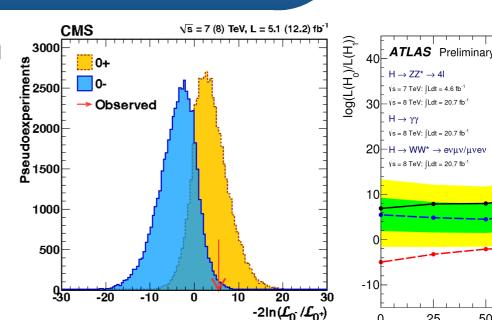
Higgs J/CP projections for Run2 and HL-LHC (ATLAS+CMS)

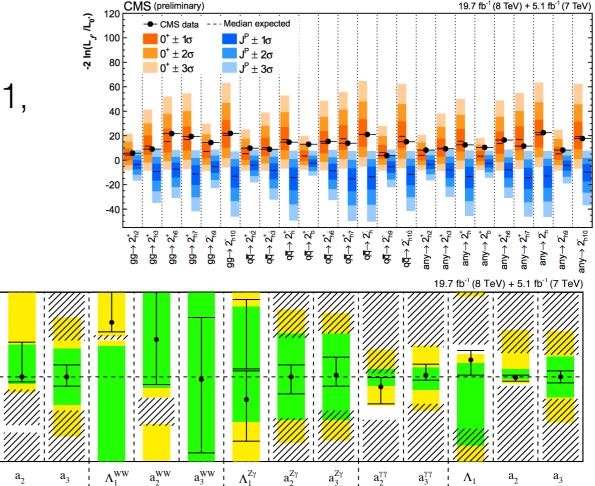
Andrew Whitbeck

On behalf of the CMS & ATLAS Collaborations

BSM Higgs @ LPC - Monday November 3, 2014




Introduction


- J^{CP} studies encompass a significant breadth of measurements
 - Spin-parity hypothesis testing
 - anomalous CP couplings
- Largely within the three main discovery channels
 - $H \rightarrow \gamma \gamma$ (spin-2 tests) $H \rightarrow ZZ \rightarrow 4I \& H \rightarrow WW \rightarrow 2I2v$ (spin-0,spin-1, spin-2 tests, anomalous couplings)

CMS Preliminary

Expected at 95% (

HΖγ

HWW

HZZ

Ηγγ

HZZ+HWW $(a_{i}^{WW} = a_{i})$

Spin (

• J^P_⊔ = 2⁺

75

t_{aā} [%]

50

25

HVV Tensor Structure

- Current JCP measurements exploit di-boson decays channels which have significant signal sensitivity
- Anomalous couplings are parameterized as:

CMS:

$$\begin{array}{lll} A(X_{J=0} \rightarrow V_{1}V_{2}) &\sim & v^{-1} \left(\left[a_{1} - e^{i\phi_{\Lambda_{1}}} \frac{q_{Z_{1}}^{2} + q_{Z_{2}}^{2}}{(\Lambda_{1})^{2}} \right] m_{z}^{2} \epsilon_{Z_{1}}^{*} \epsilon_{Z_{2}}^{*} \right. \\ &+ & a_{2} f_{\mu\nu}^{*(Z_{1})} f^{*(Z_{2}),\mu\nu} + a_{3} f_{\mu\nu}^{*(Z_{1})} \tilde{f}^{*(Z_{2}),\mu\nu} \\ &+ & a_{2}^{Z\gamma} f_{\mu\nu}^{*(Z)} f^{*(\gamma),\mu\nu} + a_{3}^{Z\gamma} f_{\mu\nu}^{*(Z)} \tilde{f}^{*(\gamma),\mu\nu} \\ &+ & a_{2}^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \right) \end{array}$$

ATLAS: $A(H \to VV) \sim (a'_1 M_H^2 g_{\mu\nu} + a'_2 (q_1 + q_2)_{\mu} (q_1 + q_2)_{\nu} + a'_3 \epsilon_{\mu\nu\alpha\beta} q^{\alpha} q^{\beta}) \epsilon_1^{*\mu} \epsilon_2^{*\nu}$ $g_1 = a'_1 \frac{m_H^2}{m_V^2} + a'_2 \frac{s}{m_V^2} \quad ; \quad g_2 = -\frac{1}{2} a'_2 \quad ; \quad g_4 = -\frac{1}{2} a'_3$

З

Fermilab

H

Notation

anomalous couplings are redefined to a unit interval:
 e.g. fa3 = 1, fa2 = 0 for pure pseudoscalar
 fa3 = fa2 = 0 for SM Higgs (up to EW corrections)

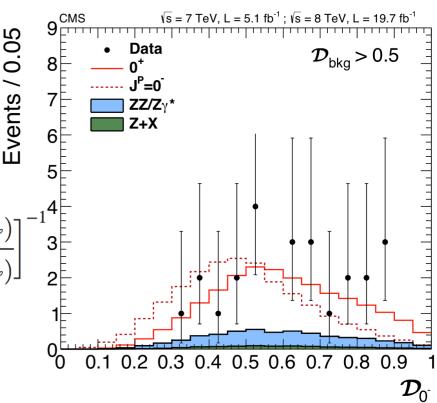
$$f_{a3} = \frac{|a_{3}|^{2}\sigma_{3}}{|a_{1}|^{2}\sigma_{1} + |a_{2}|^{2}\sigma_{2} + |a_{3}|^{2}\sigma_{3} + \tilde{\sigma}_{\Lambda_{1}}/(\Lambda_{1})^{4}} \qquad \phi_{a3} = \arg\left(\frac{a_{3}}{a_{1}}\right)$$

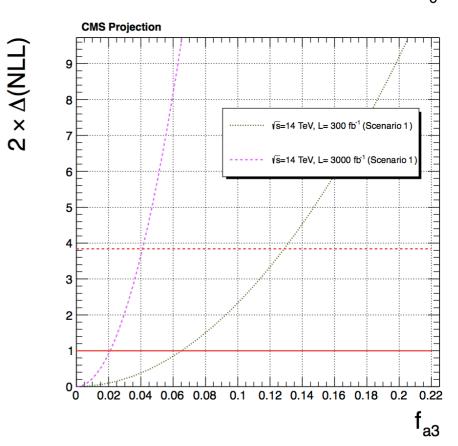
$$f_{a2} = \frac{|a_{2}|^{2}\sigma_{2}}{|a_{1}|^{2}\sigma_{1} + |a_{2}|^{2}\sigma_{2} + |a_{3}|^{2}\sigma_{3} + \tilde{\sigma}_{\Lambda_{1}}/(\Lambda_{1})^{4}} \qquad \phi_{a2} = \arg\left(\frac{a_{2}}{a_{1}}\right)$$

$$f_{\Lambda 1} = \frac{\tilde{\sigma}_{\Lambda_{1}}/(\Lambda_{1})^{4}}{|a_{1}|^{2}\sigma_{1} + |a_{2}|^{2}\sigma_{2} + |a_{3}|^{2}\sigma_{3} + \tilde{\sigma}_{\Lambda_{1}}/(\Lambda_{1})^{4}} \qquad \phi_{\Lambda 1},$$

where σ_i is the cross section of the process corresponding to $a_i = 1$, $a_{j \neq i} = 0$, while $\tilde{\sigma}_{\Lambda_1}$ is the effective cross section of the process corresponding to $\Lambda_1 > 0$, $a_{j \neq \Lambda_1} = 0$, given in units fb \cdot GeV⁴.

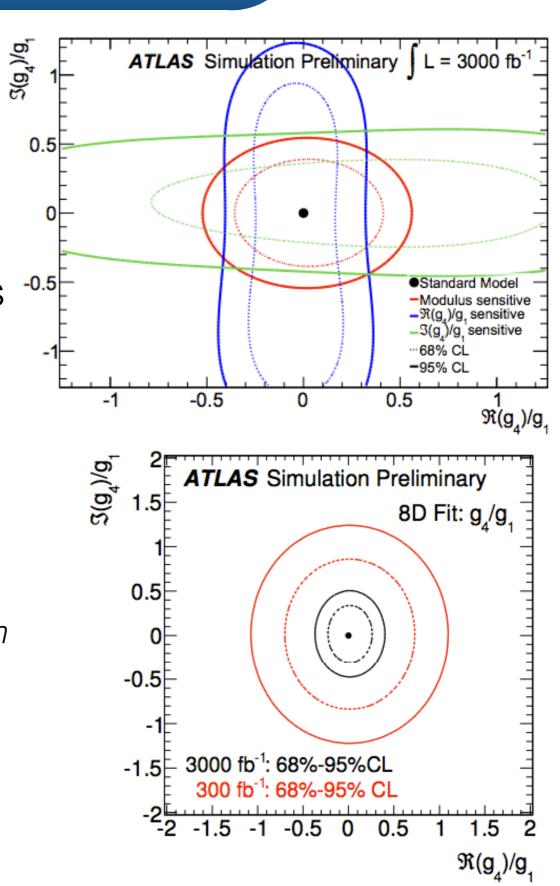
$H \rightarrow ZZ @ CMS$


- Projections out to 300/fb & 3000/fb
 - fits are performed with templates in which events are described by 2D distributions of kinematic discriminants:


$$\mathcal{D}_{bkg} = \left[1 + \frac{\mathscr{P}_{bkg}^{kin}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell}) \times \mathscr{P}_{bkg}^{mass}(m_{4\ell})}{\mathscr{P}_{0^+}^{kin}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell}) \times \mathscr{P}_{sig}^{mass}(m_{4\ell} | m_{0^+})}\right] \quad \mathcal{D}_{J^P} = \left[1 + \frac{\mathscr{P}_{J^P}^{kin}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell})}{\mathscr{P}_{0^+}^{kin}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell})}\right]$$

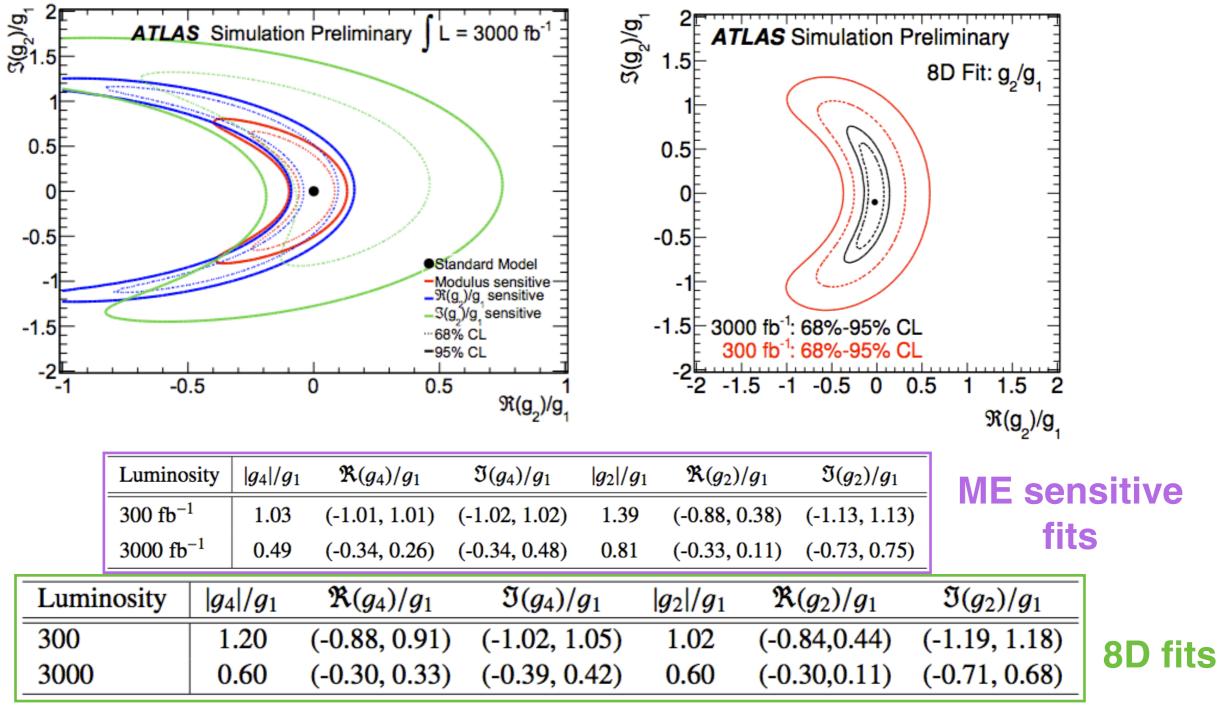
- signals model with LO MC
- scaling up all background predictions
- all systematic uncertainties are assumed to be the same: *still dominated by statistical uncertainties*
- can reach 95% C.L. upper limits of fa3 < 0.13 (0.04)

**Note, this measurement assumes that f_{a2} and ϕ_{a2} are fixed to zero 5


$H \rightarrow ZZ @ ATLAS$

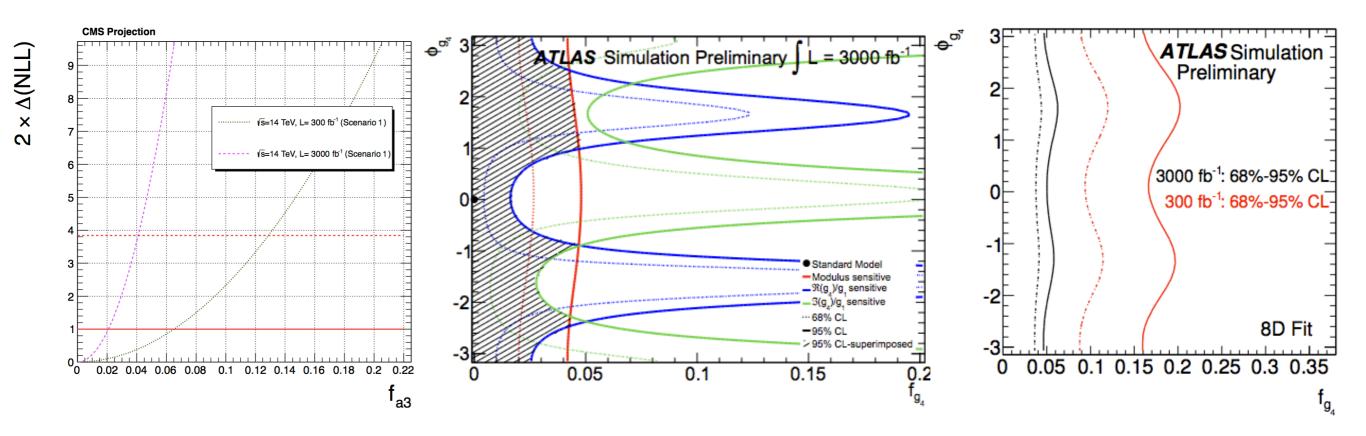
				-				
 Exploring se 	nsitivity to g	2 & g4 c	ouplings @ 30	0 & 3000/fb	O	oservable	Sensitivity	AT
 background: assuming qq->ZZ background scaled up to account for irreducible background 				ln	$\frac{ \text{ME}(g_1=1,g_2=0,g_4=0) ^2}{ \text{ME}(g_1=0,g_2=0,g_4=1) ^2}$	 g 4 /g 1	LAS-I	
Scaled u			lucible backy	lound	ln	$\frac{ \text{ME}(g_1=1,g_2=0,g_4=-2+2i) ^2}{ \text{ME}(g_1=1,g_2=0,g_4=2+2i) ^2}$	$\Re(g_4)/g_1$	AHG
 signal: LO MC - reweighing to morph signal hypothesis 				ln	$ \mathbf{ME}(\alpha - 1 - \alpha - 0 - \alpha - 2 - 2i) ^2$	$\Im(g_4)/g_1$	YS-PL	
• Fitting either				ln	$\frac{ \text{ME}(g_1=1,g_2=0,g_4=0) ^2}{ \text{ME}(g_1=1,g_2=1,g_4=0) ^2}$	$ g_2 /g_1$	IB-2	
 templates based on ME-based kinematic discriminants fully correlated 8D likelihood 					ln	$\frac{ \text{ME}(g_1=1,g_2=-1,g_4=0) ^2}{ \text{ME}(g_1=1,g_2=-1+i,g_4=0) ^2}$	$\Re(g_2)/g_1$	013-
(including approx. detector effects)					ln	$\frac{ \text{ME}(g_1=1,g_2=1-i,g_4=0) ^2}{ \text{ME}(g_1=1,g_2=1+i,g_4=0i) ^2}$	$\Im(g_2)/g_1$	013
 Systematics 5% signal and b 300/fb (3000/fb) 	ackground yield	ds (lepton	kimated to be: reco ε), and 9.4%	-		$\int_{1}^{7} Z$	e+	
	Final State	Signal	Background			g(q) H / 0*	$\left \begin{array}{c} \theta_1 \end{array} \right $	
	4 <i>e</i>	871	474			$\int \int Z \int P$	$g(\overline{q})$	
	4μ	1186	641			$\langle \ell^+ \rangle \langle \ell^- \rangle \rangle$	Φ_1	
	2e2µ	1035	574			θ_2		
€	$2\mu 2e$	867	431					
LA S	<i>expected yields (115<m< i="">₄<i>/<130)</i> 6</m<></i>							

CP violating interactions


- Likelihood scan in real and imaginary projection of g_4/g_1
 - KD fits show that phase of anomalous couplings can play an important role
 - note this can also be parameterized by extending templates' dimensionality a la CMS
 - 8D correlation less between the real and imaginary projections *simultaneously parameterizes kinematics in term of magnitude & phase of anomalous couplings*

Higher Dim. CP even interactions

• Similar qualitative comparison between the two methods


Fermilab

ATLAS-PHYS-PUB-2013-013

Comparisons

- ATLAS analysis also produced likelihood scan as a function of $f_{ai} \; \& \; \varphi_i$
- $f_{a3} = f_{g4}$ comparable results between ATLAS and CMS ($f_{a3} < 0.04 @ 95\% C.L.$)

NOTE: the parameterization used in CMS is equivalent to the 9 ATLAS modulus sensitive variable

Snowmass

 Set of results showing potential sensitivity in many collider scenarios
 1

Higgs working group report

Conveners: Sally Dawson (BNL), Andrei Gritsan (Johns Hopkins), Heather Logan (Carleton), Jianming Qian (Michigan), Chris Tully (Princeton), Rick Van Kooten (Indiana)

Authors: A. Ajaib, A. Anastassov, I. Anderson, D. Asner, O. Bake, V. Barger, T. Barklow, B. Batell, M. Battaglia, S. Berge, A. Blondel, S. Bolognesi, J. Brau, E. Brownson, M. Cahill-Rowley, C. Calancha-Paredes, C.-Y. Chen, W. Chou, R. Clare, D. Cline, N. Craig, K. Cranmer, M. de Gruttola, A. Elagin, R. Essig, L. Everett, E. Feng, K. Fujii, J. Gainer, Y. Gao, I. Gogoladze, S. Gori, R. Goncalo, N. Graf, C. Grojean, S. Guindon, H. Haber, T. Han, G. Hanson, R. Harnik, S. Heinemeyer, U. Heintz, J. Hewett, Y. Ilchenko, A. Ishikawa, A. Ismail, V. Jain, P. Janot, S. Kanemura, S. Kawada, R. Kehoe, M. Klute, A. Kotwal, K. Krueger, G. Kukartsev, K. Kumar, J. Kunkle, M. Kurata, I. Lewis, Y. Li, L. Linssen, E. Lipeles, R. Lipton, T. Liss, J. List, T. Liu, Z. Liu, I. Low, T. Ma, P. Mackenzie, B. Mellado, K. Melnikov, A. Miyamoto, G. Moortgat-Pick, G. Mourou, M. Narain, H. Neal, J. Nielsen, N. Okada, H. Okawa, J. Olsen, H. Ono, P. Onyisi, N. Parashar, M. Peskin, F. Petriello, T. Plehn, C. Pollard, C. Potter, K. Prokofiev, M. Rauch, T. Rizzo, T. Robens, V. Rodriguez, P. Roloff, R. Ruiz, V. Sanz, J. Sayre, Q. Shafi, G. Shaughnessy, M. Sher, F. Simon, N. Solyak, J. Strube, J. Stupak, S. Su, T. Suehara, T. Tanabe, T. Tajima, V. Telnov, J. Tian, S. Thomas, M. Thomson, K. Tsumura, C. Un, M. Velasco, C. Wagner, S. Wang, S. Watanuki, G. Weiglein, A. Whitbeck, K. Yagyu, W. Yao, H. Yokoya, S. Zenz, D. Zerwas, Y. Zhang, Y. Zhou

Abstract

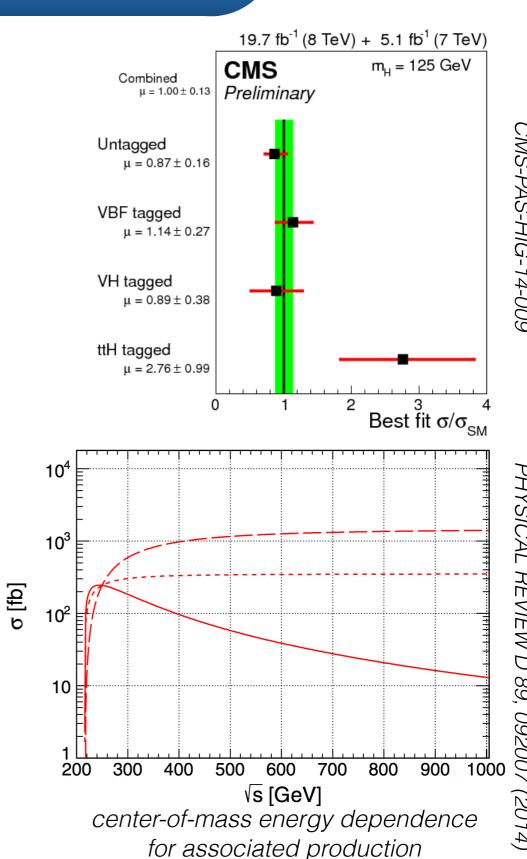
This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and *CP*-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Our report includes projections of measurement capabilities from detailed studies of the Compact Linear Collider (CLIC), a Gamma-Gamma Collider, the International Linear Collider (ILC), the Large Hadron Collider High-Luminosity Upgrade (HL-LHC), Very Large Hadron Colliders up to 100 TeV (VLHC), a Muon Collider, and a Triple-Large Electron Positron Collider (TLEP).

 One of the most complete set of recent studies on constraining CP-mixtures

H

VBF

Other Production Mechanisms


As sensitivity to other production mechanisms become significant, new opportunities arise

H→ZZ, H→WW

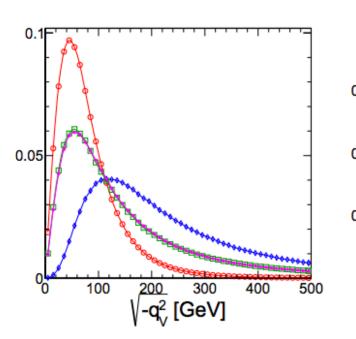
H

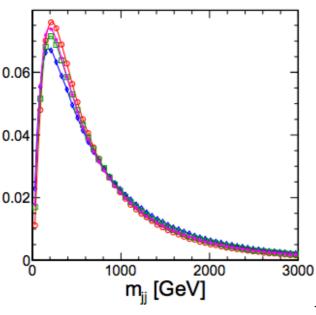
associated prod.

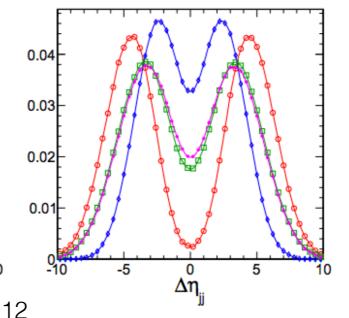
0⁻-like events have an enhancement at large \sqrt{s} - leading to increased sensitivity in associated production and VBF production channels

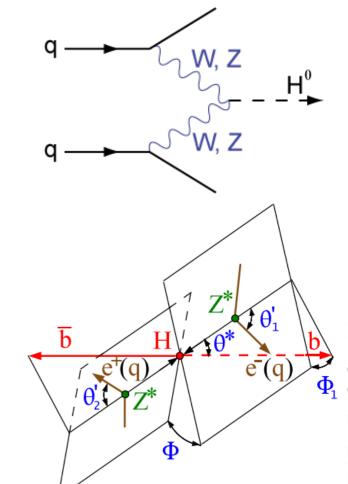
of different scalars, no q² dependence

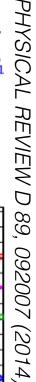
CMS-PAS-HIG-14-009

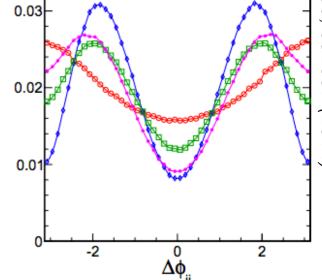

PHYSICAL REVIEW D 89, 092007 (2014)

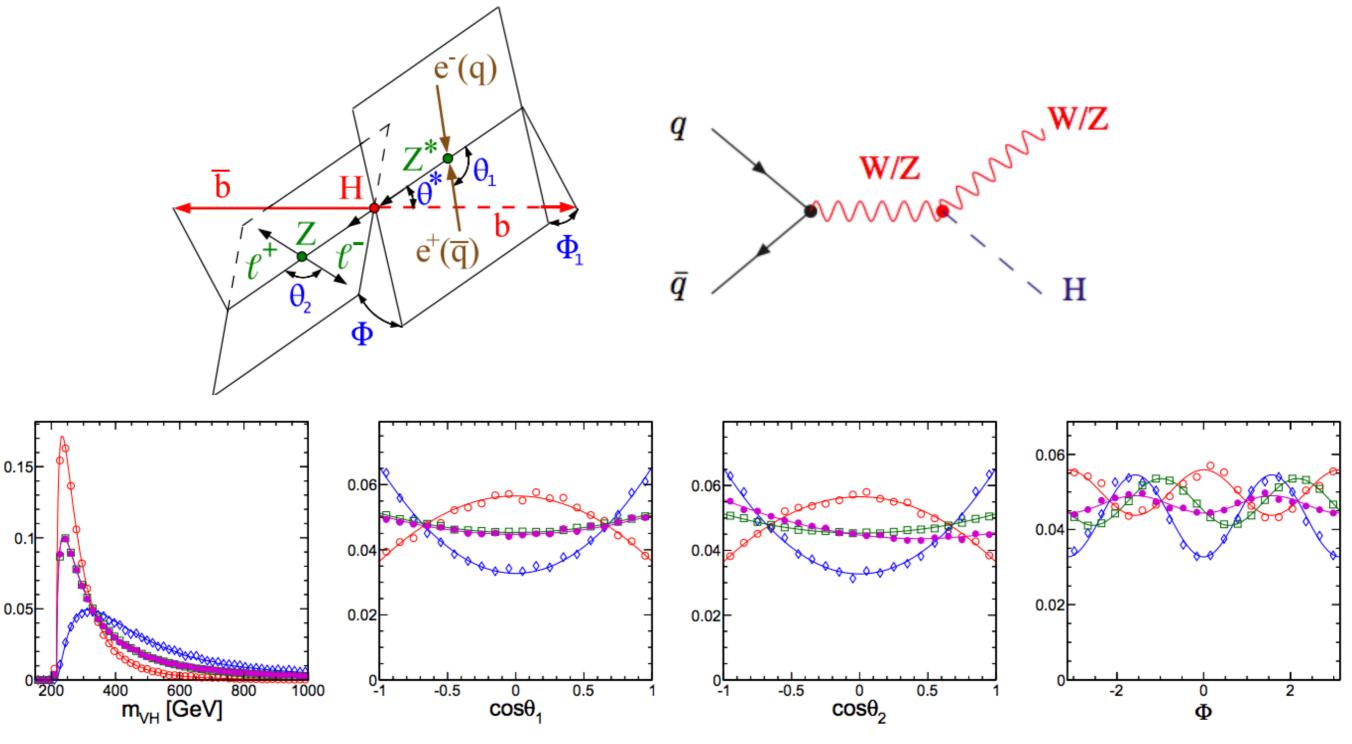



Weak Boson Fusion


Fermilab

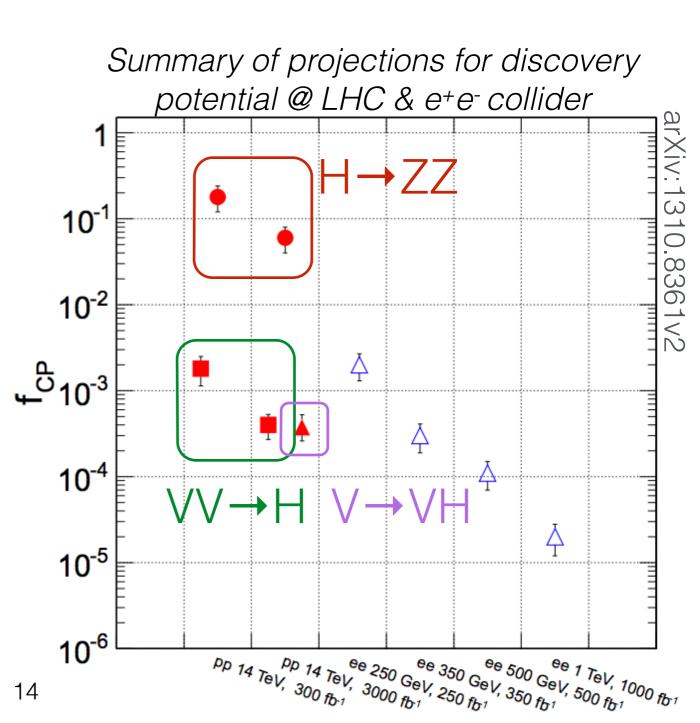

- Well known that $\Delta \varphi$ and $\Delta \eta$ reflect the tensor structure of the HVV couplings
- Strong discrimination power in $m_{V^{\star}}$
 - result of enhanced cross section at large values of m_{V*} for a pseudoscalar - susceptible to presence of q²-dependent couplings
- Angular distributions which are critical for distinguishing phases





Associated Prod.

• Qualitatively similar to VBF production


PHYSICAL REVIEW D 89, 092007 (2014)

Future Outlook for LHC

- Projections out to 300/fb & 3000/fb show strong sensitivity to CP-violating HVV interactions
 - Associated production: assuming only Z→Z(II)H(bb)
 - VBF production: assuming H(γγ) + H(ZZ)

→dominant sensitivity from associated and VBF production mechanisms!

$$f_{CP} = \frac{|a_3|^2 \sigma_3^{H \to ZZ}}{\sum |a_i|^2 \sigma_i^{H \to ZZ}}$$

e.g. $\frac{\sigma_3^{H \to ZZ}}{\sigma_1^{H \to ZZ}} \sim 0.160$

Fermion Coupling

Collider	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	$\gamma\gamma$	$\mu^+\mu^-$	target
E (GeV)	$14,\!000$	14,000	250	350	500	$1,\!000$	126	126	(theory)
$\mathcal{L} ext{ (fb}^{-1})$	300	3,000	250	350	500	1,000	250		
spin- 2_m^+	$\sim 10\sigma$	$\gg 10\sigma$	$>10\sigma$	$>10\sigma$	$>10\sigma$	$>10\sigma$			$>5\sigma$
VVH^{\dagger}	0.07	0.02	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$< 10^{-5}$
VVH^{\ddagger}	$4 \cdot 10^{-4}$	$1.2 \cdot 10^{-4}$	$7 \cdot 10^{-4}$	$1.1 \cdot 10^{-4}$	$4 \cdot 10^{-5}$	$8 \cdot 10^{-6}$	_	_	$< 10^{-5}$
VVH^{\diamond}	$7 \cdot 10^{-4}$	$1.3 \cdot 10^{-4}$	\checkmark	\checkmark	\checkmark	\checkmark	—	—	$< 10^{-5}$
ggH	0.50	0.16	_	_	_	_	_	_	$< 10^{-2}$
$\gamma\gamma H$	_	_	_	_	_	_	0.06	_	$< 10^{-2}$
$Z\gamma H$	—	\checkmark	_	_	_	_	—	—	$< 10^{-2}$
au au H	\checkmark	\checkmark	0.01	0.01	0.02	0.06	\checkmark	\checkmark	$< 10^{-2}$
ttH	\checkmark	\checkmark			0.29	0.08	_	_	$< 10^{-2}$
$\mu\mu H$			_	_		—	—	\checkmark	$< 10^{-2}$

- [†] estimated in $H \to ZZ^*$ decay mode
- [‡] estimated in $V^* \to HV$ production mode
- \diamond estimated in $V^*V^* \to H$ (VBF) production mode

Conclusions

- Great prospects for constraining Higgs tensor structure in future LHC runs!
 - traditional channels are great avenues to continue carving out parameter space of anomalous couplings
 - Both CMS & ATLAS are building up campaigns to measure/constrain couplings of the HZZ vertex:

	g		g	
	300/fb	3/ab	300/fb	3/ab
ATLAS	1.20 (0.20)	0.60 (0.06)	1.02 (0.29)	0.60 (0.12)
CMS	(0.14)	(0.04)		

• New prospects lie on the horizon: $V^* \rightarrow VH \& VBF \rightarrow H$

Backup

HZZ @ ATLAS

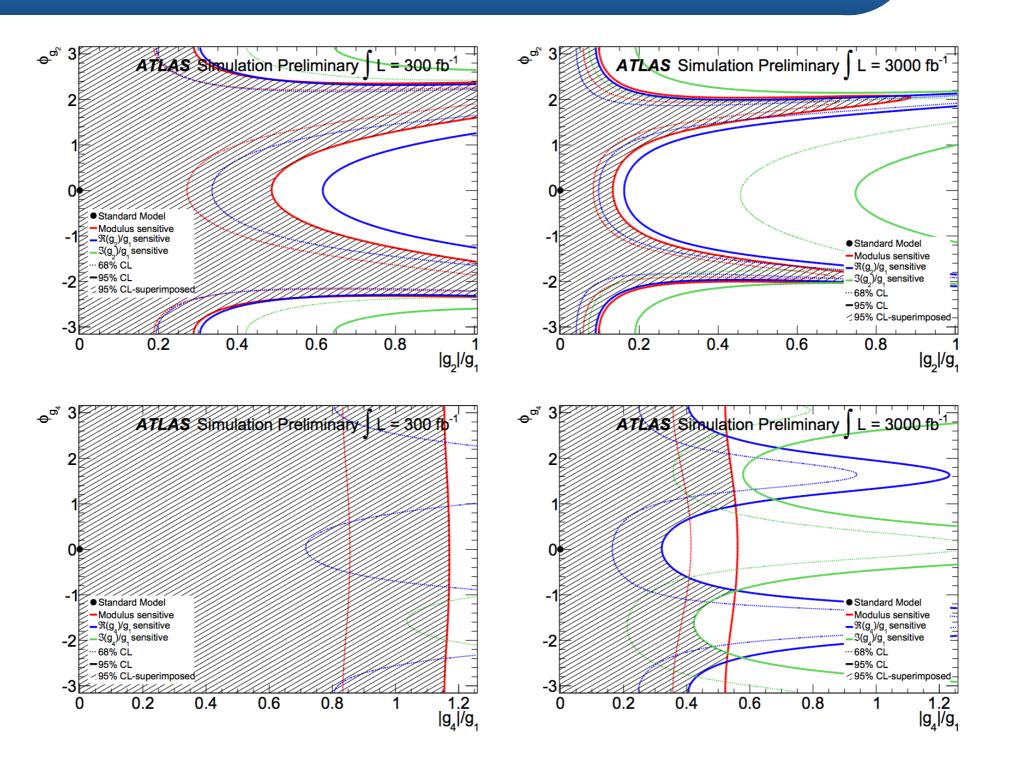


Figure 5: Results of the ME-observable fit for Standard Model signal at 300 fb⁻¹ and 3000 fb⁻¹. Top row: Results of the g_2 -sensitive fits projected onto the $(|g_2|/g_1, \phi_{g_2})$ plane. Bottom row: Results of the g_4 -sensitive fits projected onto the $(|g_4|/g_1, \phi_{g_4})$ plane. The shaded area corresponds to the most restrictive exclusion of the three observables.

ME sensitive Fits

