

Mu2e WBS 5.5 Stopping Target Director's CD-2 Review

James Miller Stopping Target Level 3 Manager 7/8/2014

Requirements: Stopping Target

- Target material must be chemically stable and available in the required size, shape, and thickness. Self-supporting is highly desirable.
 - Satisfied by current design with 17 x 0.02 cm x 15 cm ϕ Al disks spaced by 5 cm
- Conversion electron energy must be higher than for other processes in the muon capture process
 - Radiative Muon Capture $\mu^{-} +_{13}^{27} Al \rightarrow_{12}^{27} X + \nu_{\mu} + \gamma$, photon must have an energy below the CE energy $\Rightarrow m(_{12}^{27} X) > m(_{13}^{27} Al)$
- Z of stopping target must optimize signal in Measurement Period
 - Major fraction of muonic atoms must remain un-decayed during Measurement Period (MP) between 700 ns and 1700 ns after proton pulse
 - Start of MP is ~700 ns after proton pulse to ensure that pions in beam line have disappeared \Rightarrow lifetime > 700 ns; Al lifetime is 864 ns
 - Conversion electron sensitivity roughly proportional to Z for nucleus for low Z
- \Rightarrow Maximize Z (Al is a good compromise between high Z and long muonic atom lifetime)

🌫 Fermilab

Requirements: Stopping Target (2)

- The target must be sufficiently thick in the direction of the muon beam to stop a large fraction of the incoming muons.
 - Nominally, we need to stop at least 40% of the transported muons in order to reach the desired signal sensitivity \Rightarrow target should be thick
- The target must present the minimum possible path length to hypothetical conversion electrons that would be within the acceptance of the detector.
 - Energy straggling in the stopping target is a major contributor to the resolution of the electron energy spectrum, and in addition bremstrahlung in the target leads to a low energy tail. ⇒ target should be thin
- The target thickness should also be minimized in order to help control background ⇒ target should be thin
 - Bremsstrahlung caused by beam electrons traversing the target
 - delta rays produced in the target by energetic cosmic ray muons, or other cosmic ray interactions, etc.

Mu2e

Requirements: Stopping Target (3)

- The target material must be pure enough to avoid background due to muon DIO in impurity nuclei.
 - This is not stringent for AI because of its high conversion electron energy
 - This is much more of a problem for higher Z nuclei, which have lower conversion electron energies
- The radii of the target (e.g. extent of the target away from the solenoid axis) should be optimized
 - target needs to intercept as much of the muon beam as possible in order to maximize the number of stops \Rightarrow target should extend to large r
 - minimize the number of decay in orbit (DIO) electrons which can reach out to the inside radius of the tracker and produce unnecessarily large hit rates
 ⇒ target should not extend to large r
- Position each disk within 2 mm along any dimension
 - Trackback to target provides background suppression, uniform 5 cm spacing will help
 - More predictable simulations (although accurate *knowledge* of positions would

🚰 Fermilab

Requirements: Stopping Target (4)

- Target supports must not cause loss of Conversion Electron sensitivity
 - Supports must not produce backgrounds or noise hits in the detectors during the Measurement Period (700-1700 ns after proton pulse)
 - If muons stop in target supports at radii larger than that of the target, DIO electrons will reach a large enough radius to cause unnecessary hits in the detectors
 ⇒ low mass in support materials where the radius (and the muon flux) is large
 - If muonic atoms formed in the supports have a long lifetime, they can present a significant background or noise source during the measurement period
 - \Rightarrow supports made of high Z nuclei: short lifetime and lower DIO maximum energy
 - Supports must not degrade acceptance or energy resolution of the Conversion Electron \Rightarrow low mass in support materials
 - Supports should not significantly reduce the rate of muons stops in target

 \Rightarrow low mass in support materials

- Solution: use tungsten (Z=74) wire supports within the radius where there are incoming muons
 - W muonic lifetime ~ 80 ns (compare Al 864 ns)
 - Thin tungsten wire readily available and strong

5 Fermilab

 Suspension by three x 3 mil (75 micron) diameter Tungsten Wire

 Support wires must pass through the outer proton absorber through slots

6

Changes since CD-1

- In prototype tests, one mil tungsten wire was not sufficiently strong
- Three mil tungsten wire prototype works
 - From simulations: no problems introduced by thicker wire: does not degrade CE energy resolution, causes no significant background, few noise hits in the tracker or collimator

Performance

- Prototype support wires with various tensions, wire connections at ends.
- All but one target foil have held for months
- The one failure is associated with wire cutting through solder end connection- this method of connection will be discarded.
- Wires threaded through metal (AI target or bolts) work well

Performance

- Stopping target simulation team has verified the performance
 - Continue optimization of target configuration

J. Miller- Director's Review

Mu₂e

9

🚰 Fermilab

Performance

- 99.99% Pure AI disks readily acquired
- Prototype support for 6 disks has been shown to hold for several months
- One wire supported with solder cut through solder
- Wires threaded through metal supports work well

Remaining work before CD-3

- Likely need additional mechanical angled wire support to damp horizontal oscillations in vacuum
- Design frame that fits in with the surrounding proton absorber
- Complete prototype studies
- Complete target design optimizations

Quality Assurance

- Prototype supports will be tested for many months to check for long-term viability
- Check thickness and uniformity of each disk

Cost Distribution by Resource Type

Base Cost (AY \$k)

🛟 Fermilab

Quality of Estimate

Base Cost by Estimate Type (AY\$k)

Labor Resources

FTEs by Discipline

07/08/14 **Fermilab**

Cost Table

WBS 5.5 Stopping Target

Costs are fully burdened in AY \$k

	Base Cost (AY \$k)					
	M&S	Labor	Total	Estimate Uncertainty (on remaining costs)	% Contingency on ETC	Total Cost
475.05 Muon Beamline						
475.05.05 Stopping Target						
475.05.05 Stopping Target	54	121	175	63	38%	238
Grand Total	54	121	175	63	38%	238

Major Milestones

- L5- Stopping target preliminary design complete 30 May 14
- L5 Muon Beamline External Shielding ready for CD 3a Review 23-jan-18
- L5 CD-3a approval (Stopping Target) 06-Mar-18
- L4 Stopping Target at FNAL 05-Dec-18
- L4- Stopping Target Ready for CD-4 10-Feb-20

Summary

- Prototypes are proof of principle for tungsten wire supports of target disks
- Simulations demonstrate that the current concept meets physics requirements

