

Mu2e CD-2 Director Review: Calorimeter Requirements

Pavel Murat, Fermilab 07/09/2014

Requirements: Mu2e-docdb 864

- "seeds" to improve track finding efficiency at high occupancy
- particle identification capabilities

Calorimeter-based Trigger

- acceptance: >99% of events with good tracks have a cluster E > 10 MeV
- standalone calorimeter-based online trigger may be required
 - tracker momentum calibration (i.e., $\pi^0 \rightarrow e_v$) needs a non-tracker trigger
 - DAQ bandwidth limitations
- trigger logic: a cluster with E > E(min)
- $\epsilon(CE) = 90\%$ at 2 KHz requires $\sigma(E)/E < 7\%$

3

Energy Resolution

- need to separate 100 MeV/c electrons from muons
- on average, muons deposit about 43 MeV, electrons about 95 MeV
- Energy resolution $\sigma(E)/E < 5\%$ sufficient
- timing requirement: need to separate muon decays and captures
- calorimeter and its readout have to be fast enough (talk by I.Sarra)

Mu2e

Energy Resolution

- MC : for the expected light yield (30 p.e./MeV) and noise level (< 0.3 MeV), • resolution $\sigma(E)/E < 5\%$ can be achieved
- more details talk by B. Echenard •

5

Energy Calibration

plan to use multiple calibrations:

laser calibration

- **Figure 3.** Typical source calibration spectrum from a *BABAR* CsI(Tl) crystal showing the 6.13 MeV peak, along with two escape peaks, which provide a gain calibration.
- neutron-activated ¹⁹F source calibration at 6 MeV
- higher energies: cosmic rays, DIO electrons
- energy response to be calibrated to the accuracy $\sigma(\text{E})/\text{E} \sim 0.5\%$
- more details: talk by K. Flood

Coordinate Resolution

- track extrapolation accuracy several mm
- typical cluster "size" ~ several cm
- cluster position resolution requirement: ~1cm or better

7/9/14 **Fermilab**

Coordinate Resolution

- MC studies: resolution better than 1cm can be achieved
- coordinate resolution important for rejecting random coincidences in high occupancy environment

Radiation Hardness, Stability, and Monitoring

- calorimeter must operated at B = 1T in high radiation environment
- innermost crystals of the 1st disk will acquire doses up to 200 Gy/year
- require crystal response be stable for < 50 Gy/year
- more discussion of radiation damage in the upcoming talks
 Mu2e

Timing Resolution

- Mu2e detector doesn't have an "event time"
- track T0 is determined from the track fit, $\sigma_{\rm T0}\,$ ~0.5 ns
- muons are reconstructed under electron hypothesis
- to improve tracking, calorimeter timing resolution has to be < 0.5 ns

Particle Identification

Probability to identity a particle, tracker-only

- reducing the cosmic background to the level < 0.1 events over 3 years of running requires muon rejection factor of ~200
- Mu2e tracker has PID capabilities (timing and dE/dX)
- for muon rejection factor of 200, the tracker-only PID has efficiency < 50%

Particle Identification

Muon Rejection Vs Electron Efficiency

- combine tracking and calorimeter information
 - use position and timing matching to reject random background
 - build PID likelihood using E/P and combined timing information
- for expected background and rejection of 200, ϵ (electrons) > 96%
- more details in the talk by G. Pezzullo
 Mu2e

Calorimeter-seeded Track Finding

- S/N = number of background hits / number of CE hits
- reconstructed calorimeter cluster time predicts times of the track straw hits
- allows to reduce the pattern recognition S/N from 1:100 down to ~ 1:1
- more details in the talk by G. Pezzullo

Summary

Mu2e calorimeter has to

- provide energy resolution $\sigma(E)/E \le 5\%$ monitored at a level of < 0.5%
- provide timing resolution $\sigma(T) < 0.5$ ns
- provide position resolution < 1 cm
- provide cluster-based track seeds for track finding
- provide high electron reconstruction efficiency for muon rejection of 200
- provide online trigger capabilities
- operate in high radiation environment, 50 Gy/year
- have monitoring of temperature, pressure, radiation dose rate

Studies by the Mu2e collaboration show that these requirements can be met

