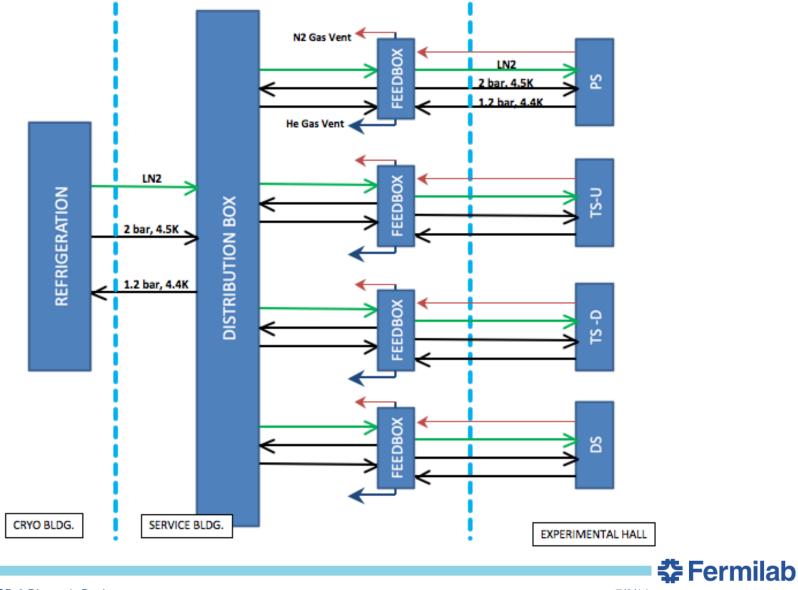
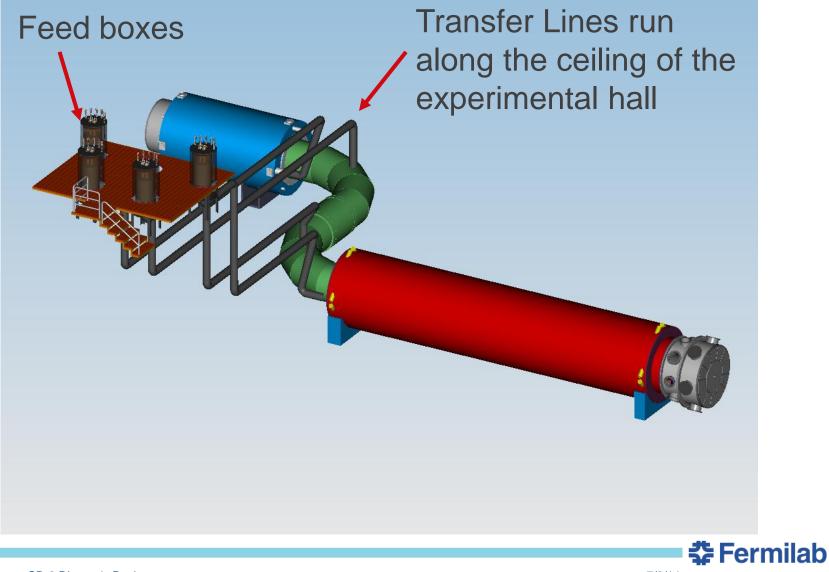


WBS 475.04.05 Cryogenic Distribution


Thomas Page Project Engineer 08-Jul-2014

Requirements

- Cryogenic Distribution Requirements Document: DocDB 1244
- Distribution Box Functional Requirements Document: DocDB 3784
- Summary of requirements
 - The solenoids are divided into 4 separate cryogenic circuits fed from a common distribution box. This allows the magnets to be cooled down and warmed up independent of each other.
 - All solenoid coils will be indirectly (conduction) cooled by liquid helium.
 - PS and DS magnets are cooled using a thermal siphon system.
 - TSu and TSd magnets are cooled using a forced flow system.
 - Liquid nitrogen will be used to cool the thermal shields and thermal intercepts within the magnet cryostats and transfer lines.
 - During operation the insulating vacuum should be below 10e-6 torr.
 - Feed boxes will be installed on the main level of the Mu2e building, the magnets are installed in the lower level of the Mu2e building.
 - Steady state operation will be within the limits of one satellite refrigerator.


Block Diagram of Mu2e Cryogenic System

3 T. Page - CD-2 Director's Review

Mu₂e

Cryogenic Distribution model

Mu_{2e}

Preliminary P&ID

5

Design

- A distribution box in the service building interconnects the refrigeration system with the solenoid feed boxes.
 Interconnections will be for:
 - Liquid helium supply
 - Helium vapor return
 - Liquid nitrogen supply
- Liquid nitrogen comes from LN2 storage to the distribution box
- Distribution box passes cryogens to four feed boxes, one for each magnet assembly
- Transfer lines and bayonets allow isolation of feed boxes from distribution box

Design

- Control valves in feed boxes
 - No cryogenic control valves in high radiation / high magnetic field areas
- Transfer lines from feed boxes to magnets carry cryogens to and from its magnet as well as electrical bus to the same magnet
- Insulating vacuum is separate for each feed box / magnet system such that separate warm up and isolation of magnets is possible.

Changes since CD-1

- The transfer line routing has changed since CD-1
 - The DS transfer line penetrates through shielding near the downstream end of the DS magnet.
 - The TSd transfer line is routed under the shielding in a trench in the Mu2e building floor.
- Cryogenic Controls WBS (formally 475.04.05.06) has been moved to Quench Protection WBS (475.04.07.03).

Downselects

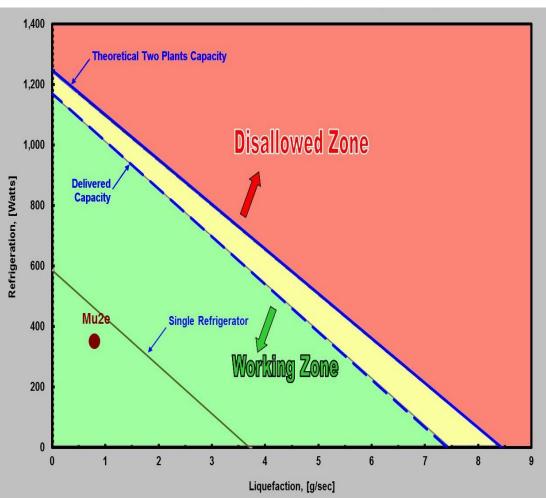
- The Detector Solenoid will be cooled using a thermal siphon system.
- The Transport Solenoids will be cooled using a forced flow system.

Performance – Heat Load to 80 K

Best Estimates (no contingency)	Production Solenoid	TSu	TSd	Detector Solenoid	Total	
Nominal Temperature	80 K					
80 K Magnet Heat (W)	128.5	252.0	252.0	539.0	1171.5	
80 K Feedbox and Transfer Line* Heat (W)	140.0	140.0	140.0	140.0	560.0	
Total 80 K Heat (W)	268.5	392.0	392.0	679.0	1731.5	
Nitrogen usage for Magnet (liquid liters/day)	147.42	215.22	215.22	372.80	950.67	
Number of 10kA HTS Leads	2	0	0	2	4	
Number of 2kA HTS Leads	0	2	2	0	4	
N2 10kA lead flow per magnet (g/s)	2.2	0	0	2.2	4.4	
N2 usage for 10kA leads (liquid liters/day)	235.54	0.00	0.00	235.54	471.08	
He vapor 2kA lead flow per magnet (g/s)	0	0.16	0.16	0	0.32	
He vapor usage for 2kA leads (liquid liters/day)	0	110.592	110.592	0	221.18	

*Transfer Line length only from feedbox to magnet considered

Performance – Heat Load to 4.7 K

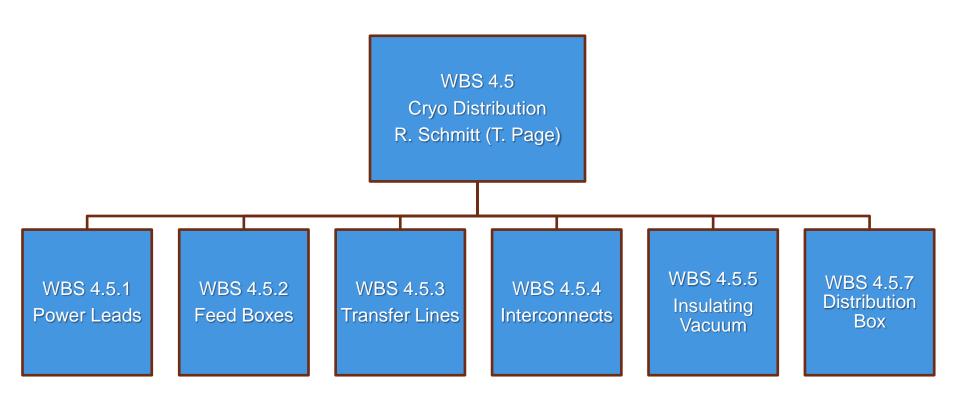

Best Estimates (no contingency)	PS	TSu	TSd	DS	Total
Nominal Temperature		-	4.7 K		
4.7 K Magnet Heat (W)	66.7	44.0	42.0	32.2	184.9
4.7 K Feedbox and Transfer Line** Heat (W)	14.0	14.0	14.0	14.0	56.0
Thermosiphon					
Total heat load (W)	80.7	0	0	46.2	126.9
Total helium flow (g/s)	4.78	0.00	0.00	2.74	
3.0 bar to 2.7 bar forced flow					
Helium inlet temperature (K)		4.7	4.7		
Total heat added (W)		58.0	56.0		
Selected flow rate (g/s)		50.0	50.0		
Exit temperature (K)		4.82	4.81		
Circulating pump real work (W)		25.0	25.0		
Circulating pump system static heat (W)		15.0	15.0		
Total load for forced flow (W)	0	98.0	96.0	0	194.0
Total refrigerator cooling load at 4.7 K (W)					320.9

**Transfer Line length only from feedbox to magnet considered

Mu₂e

Performance – One Satellite Refrigerator

- Two satellite refrigerators dedicated to Mu2e.
- Steady state operation will utilize one refrigerator.
- Second refrigerator is used during cooldown and upset conditions.
- Refrigerators are part of the Muon Campus Cryo AIP.



Mu₂e

Remaining work before CD-3

- Complete qualification of the existing HTS power leads.
- Develop feed through for 2kA power leads.
- Complete the detailed final design and specification of the feed boxes and transfer lines.
- Complete the detailed final design and specification of the insulating vacuum system.
- Complete the detailed final design and specification of the distribution box.

Organizational Breakdown

Quality Assurance

- Power leads are tested to full current prior to sending to vendor for integration.
- Inspections, leak checks and pressure tests during fabrication prior to vessel closure.
- Regular vendor meetings and vendor visits during fabrication.
- Travelers will be written for installation at FNAL.

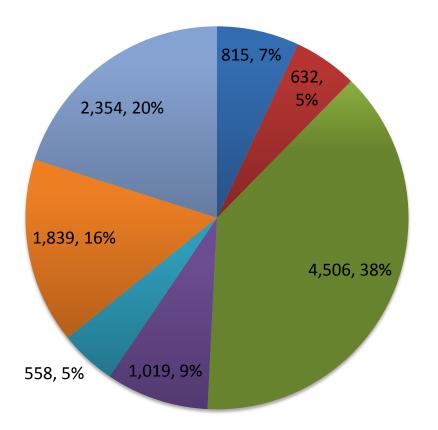
Risks

- Opportunity for the Distribution Box
 - Move the design of the distribution box to the Cryo AIP.
 - Savings to Mu2e project would be ~ \$1.5M.
- Tevatron HTS leads do not perform to Mu2e specifications
 - Three out six pairs of HTS leads have been qualified.
 - Testing of remaining leads continues.
 - Project needs 4 pairs plus one spare pair to fully retire risk.

112e

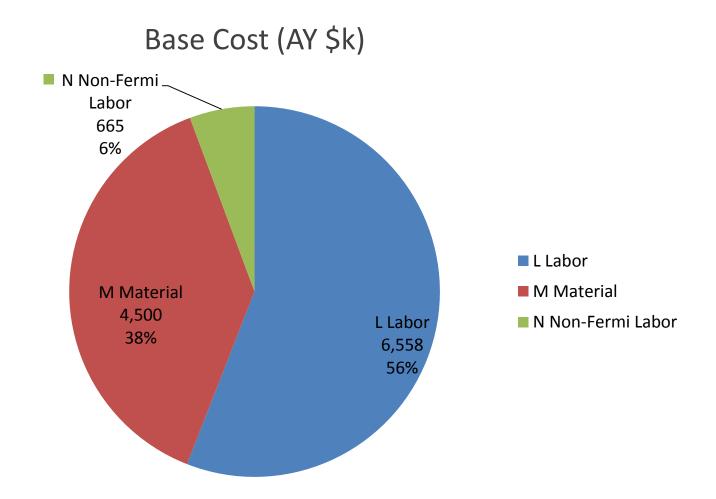
ES&H

- Oxygen Deficiency Hazards (ODH)
 - FESHM chapter 5064 (ODH) will be followed
- Pressure vessel, pressure piping, vacuum vessels, cryogenic system review
 - FESHM chapters 5031, 5031.1, 5032, 5033 and associated material
- General cryogenic safety practices
 - "Burn" protection, PPE
 - Written procedures and training as required


Major Milestones

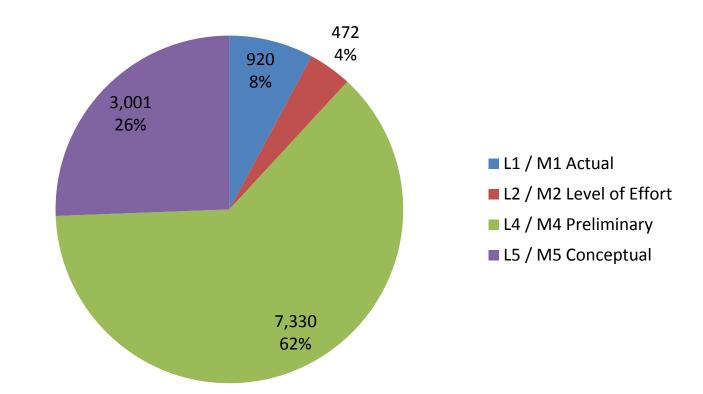
- Final Designs Complete
- Vendors selected and POs issued
- Components accepted and delivered to the Mu2e building.

Cost Distribution by L4

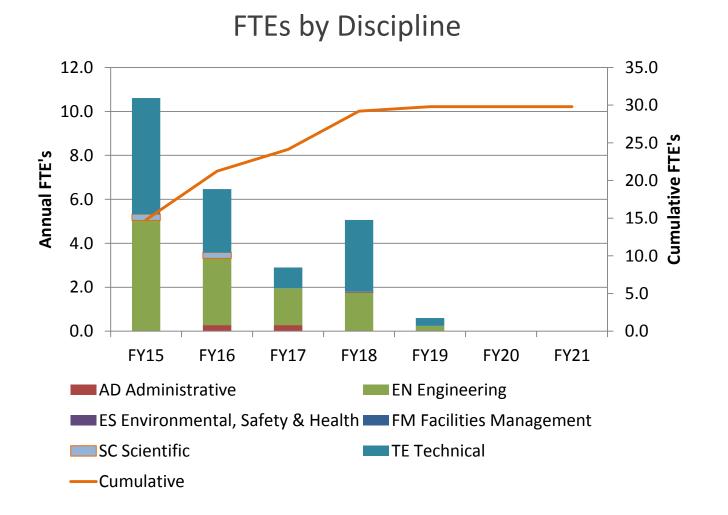

Base Cost by L4 (AY \$k)

- 475.04.05 Cryogenic System Actuals
- **475.04.05.01** Power Leads
- 475.04.05.02 Cryogenic Feed Boxes
- 475.04.05.03 Cryogenic Transfer Lines
- 475.04.05.04 Cryogenic Interconnects
- 475.04.05.05 Insulating Vacuum System
- 475.04.05.07 Cryogenic Distribution Box

Cost Distribution by Resource Type



Quality of Estimate


Base Cost by Estimate Type (AY \$k)

21 T. Page - CD-2 Director's Review

Labor Resources

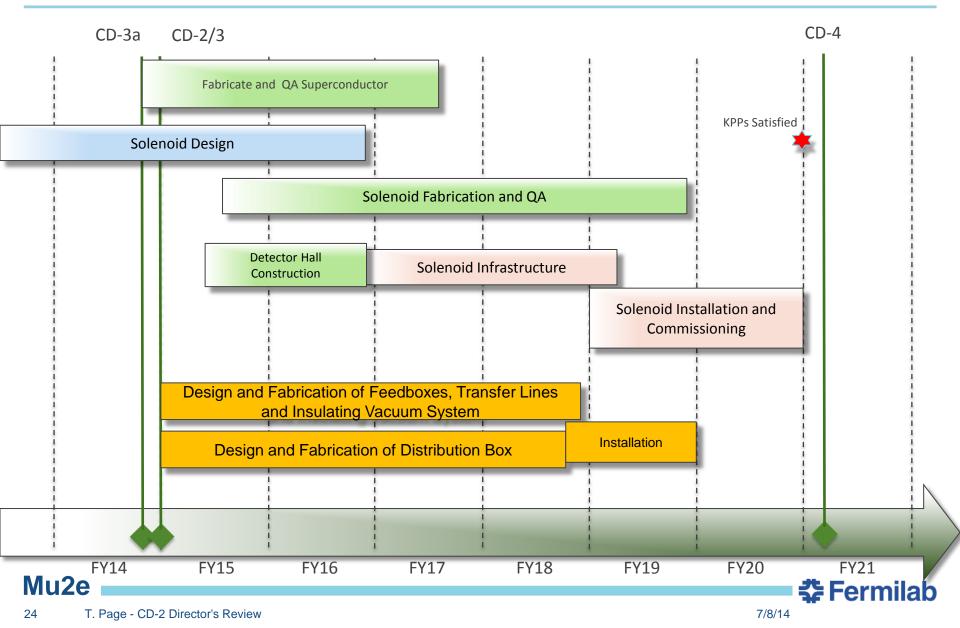
22 T. Page - CD-2 Director's Review

7/8/14

🛟 Fermilab

Cost Table

WBS 4.5 Cryogenic Distribution System


Costs are fully burdened in AY \$k

	Base Cost (AY \$k)					
	M&S	Labor	Total	Estimate Uncertainty (on remaining costs)	% Contingency on ETC	Total Cost
475.04 Solenoids						
475.04.05 Cryogenic System						
475.04.05 Cryogenic System Actuals	10	805	815	7		822
475.04.05.01 Power Leads	84	548	632	239	43%	871
475.04.05.02 Cryogenic Feed Boxes	2,581	1,926	4,506	1,761	39%	6,267
475.04.05.03 Cryogenic Transfer Lines	265	753	1,019	434	44%	1,452
475.04.05.04 Cryogenic Interconnects	120	438	558	194	35%	752
475.04.05.05 Insulating Vacuum System	1,059	780	1,839	613	33%	2,452
475.04.05.07 Cryogenic Distribution Box	1,046	1,307	2,354	873	37%	3,227
Grand Total	5,165	6,558	11,723	4,122	38%	15,844

Mu2e

Schedule

Summary

- Preliminary design is complete.
- Resources are in place to complete the final design and specifications.
- The Cryogenic Distribution system is ready for CD-2.