

475.04.04 Mu2e Detector Solenoid

Marc Buehler L3 for Mu2e Detector Solenoid July 8-10, 2014

Requirements: Overview

- Provide volume for the Mu2e experiment:
 - 1.8 m aperture, 10 m length
- Provide precision magnetic field:
 - Graded field region (2 T to 1 T) to focus muons on stopping target and deflection of conversion electrons towards spectrometer
 - Uniform field region (1 T) for precision tracking and calorimetry

2

🚰 Fermilab

Design: Cable

DS uses Al-stabilized NbTi Rutherford cable

"Narrow" Conductor ("DS1")

"Wide" Conductor ("DS2",)

Cable	Number of Units	Unit Length	Furukawa
DS1	9	1100 meters	
DS2	4	1750 meters	Hitachi

Order for production quantity of DS cable has been placed

Mu2e

3

🚰 Fermilab

Design: Coils

• DS has 11 coils

- Single-layer in tracker/calorimeter region
- Double layer everywhere else

Coil #	Coil IR [m]	Coil OR [m]	Coil Length [m]	#ZC [m]	# Layers	#Turns Per Layer	Total #Turns
1	1.0500	1.0915	0.42075	3.7489	2	73	146
2	1.0500	1.0915	0.42075	4.1739	2	73	146
3	1.0500	1.0915	0.42075	4.5989	2	73	146
4	1.0500	1.0915	0.42075	5.2519	2	73	146
5	1.0500	1.0915	0.36325	5.8801	2	63	126
6	1.0500	1.0915	0.36325	6.5701	2	63	126
7	1.0500	1.0915	0.36325	7.3971	2	63	126
8	1.0500	1.0705	1.8310	8.8178	1	244	244
9	1.0500	1.0705	1.8310	10.6528	1	244	244
10	1.0500	1.0705	1.8310	12.4883	1	244	244
11	1.0500	1.0915	0.36325	13.6425	2	63	126

Mu2e

4

🛟 Fermilab

Design: Cryostat

- ~10 m long
- ~2.7 (1.9) m OD (ID)
- Stainless steel
- Openings in outer shell:
 - Chimney for transfer line
 - Vacuum ports
 - Radial support towers
- Bore must accommodate
 ~10 tons of equipment via
 rails attached to inner shell

Mu₂e

7/08/14

Changes since CD-1

- Decision to use thermosiphon cooling scheme for cold mass assembly
- Magnet length changed

Mu₂e

Value Engineering since CD-1

- Overall stable design:
 - Develop RDR, technical drawings and solid model for potential vendors
- Similar design approach for both DS and PS

Performance: Magnetic Field

- Field maps with coil displacement errors were generated assuming manufacturing tolerances
- Mu2e Tracking group used these field maps as inputs to their track reconstruction algorithms
- Mu2e Tracking group verified that inputs satisfied physics requirements

Mu2e

Performance: Operating Margins

Cable critical current density in the field range of interest at reference Temp. (4.2 K), operating temp. (5 K), and 7.6 K to account for margin

- Cable designed to operate at least at 45% of conductor quench current
- 2.5 K temperature margin w.r.t. conductor temperature of 5 K
- Peak field in narrow conductor is 2.15 T
- Peak field in wide conductor is 1.07 T
- Larger margins in all other segments

7/08/14

🚰 Fermilab

Performance: Thermal Analysis

- Performed extensive modeling, to estimate cooling tube size and locations taking into account insulation material properties (FEA)
- Temperatures do not exceed 5 K

Remaining work before CD-3

- Vendor develops final design and Fermilab approves
- Prepare final design of DS support stand

Quality Assurance

- Site visits to potential vendors before award of contract
- Site visits during fabrication
- Traveler System:
 - Magnet vendor has to call out all fabrication steps, including internal sign-offs and data validating successful completion
- Tests:
 - Tests will be performed during all phases of magnet fabrication to insure that specifications are met
 - Leak, pressure, electrical, ... tests are specified
- Magnet vendor is required to implement a Quality Assurance Plan
- Acceptance tests:
 - A detailed sequence of tests before acceptance has been specified
- Model coil:
 - Before building the DS, the magnet vendor has to successfully demonstrate fabrication techniques for tooling, cable insulation, coil winding, impregnation etc.
- Details are outlined in our Procurement Specification document (DocDB 3670)

🛠 Fermilab

Risks

- Risk: Critical path delayed due to DS schedule delay
- Mitigation:
 - Risk register
 - Quality assurance strategy outlined on previous slide

ES&H

- Common to large superconducting magnet systems
 - Cryogenic fluids
 - Large stored energy (26 MJ)
 - High currents (up to 6 kA)
 - Large voltages to ground during quench (up to 500 V)
 - ODH (release of liquid helium during accident, LN2 for 80 K shields)
 - Mechanical forces (large axial force between adjacent magnets, magnet is very heavy)

Se Fermilab

7/08/14

- Large volume vacuum systems (beam line + insulating)
- Stray magnetic fields (no return yoke)

Cost Breakdown Labor vs Material

Quality of Estimate

Labor Resources by FY

		Base Cost (AY k\$)				
	M&S	Labor	Total	Estimate Uncertainty (on remaining costs)	% Contingency on ETC	Total Cost
475.04.04 Detector Solenoid	13,759	2,169	15,929	2,620	17%	18,549
Grand Total	13,759	2,169	15,929	2,620	17%	18,549

Major Vendor Milestones

- Start of final design contract
- Review and approval of final design
- Award of magnet fabrication phase of the contract
- Delivery of superconductor
- Manufacturing of Model Coil
- Acceptance of Model Coil
- Start manufacturing of DS
- First coil production review
- Cold mass production review
- Cryostat production review
- Tests at vendor site
- Shipping of DS to Fermilab
- Tests at Fermilab
- Final acceptance by Fermilab

Mu2e

Schedule

Summary

- A detailed set of requirements and specifications for the DS, including RDR, TDR, drawings, and solid model have been developed
- A vendor for the DS has been identified and the initial contract to develop the final design will be issued shortly
 - Cost and schedule for DS incorporates information provided by vendor
- Order for production quantity of DS cable has been placed
- DS is ready to move into the final design phase

