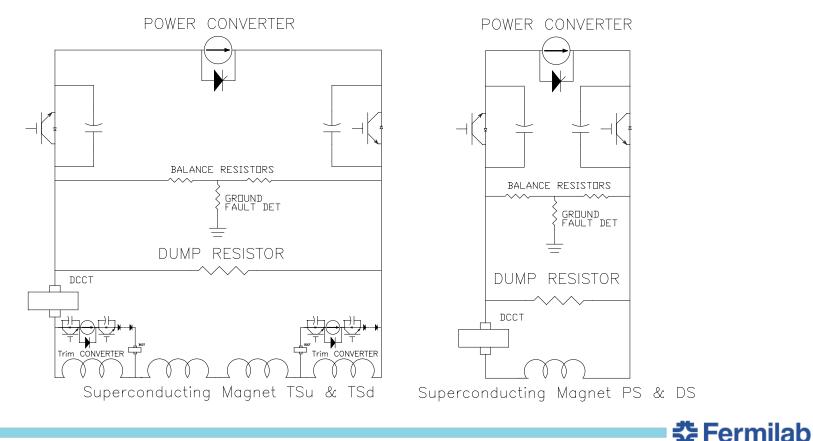


475.04.06 Magnet Power Supply System

Steven Hays x2337 AD E/E Support Electrical Engineer 7/8/2014

Requirements Magnet Systems


- Mu2e Power Supply Document 1237
 - Four main loops
 - Four trim loops, two on each TS magnet.
 - Energy Extraction on all main loops.

Parameter	Unit	PS	TSu	TSTU x2	TSd	TSTD x2	DS
Max. allowable conductor temperature	К	5.0	5.4		5.5		6.1
Nominal current	Α	9200	1730	250	1730	250	6114
Peak field in coil	Т	5.48	3.4		3.4		2.2
Current fraction along load line at 4.5 K	%	63	58		50		45
Inductance	Н	1.58	4.77		3.79		1.40
Stored energy	MJ	66.8	7.1		5.7		26.1
Cold mass	tonnes	10.9	13		13		8
E/m	kJ/kg	7.31	0.8		0.7		3.6

Requirements Energy Extraction

- The TS magnet loops with two trim power supplies, one on each end.
 - The main Dump Switch disconnects the power supply from the magnet.
 - Two small switches will be installed on the trim power supplies to isolated them from the magnet during a Quench/Dump.

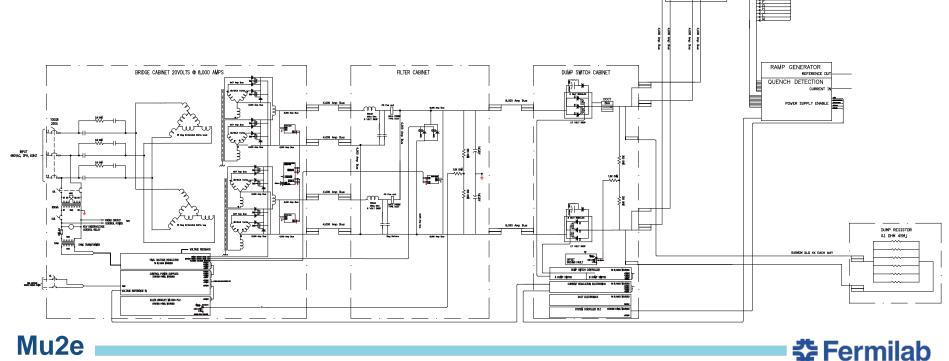
Mu₂e

Requirements Regulation and Quench Response

FUNCTIONS OF THE POWER SUPPLY SYSTEM

- Stand by Startup Allow for system check before high current.
- All loops track to \pm -10⁻³ of FS while ramping. Ramping —
- Steady State - Ramp to current and regulate to $+/-10^{-4}$ of full scale. —
- Field Adjustments +/- current changes as needed. —
 - The speed will be limited by the available voltage, More ramp down voltage than up because of bus and semiconductor voltage drops.
 - To provide this the power supplies will need to be two quadrant, +/- Voltage and will need minor modifications to enable.

Magnet Protection


- Normal Discharge Use the power supply to remove the magnet energy.
- Minor Faults - Turn Off the supply and decay using bus work.
- Emergency Discharge Dump into a resistor, most passive mode. _

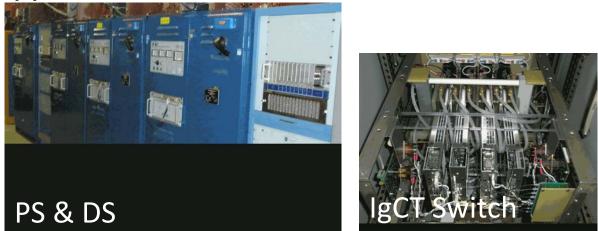
Design DS shown, typical of all loops.

- BASIC POWER SUPPLY DESIGN
 - Commercial device for the power supply.
 - Output filter Commercial build to print.
 - Dump switches FNAL design.
 - Regulation and control FNAL design.

DETECTOR SOLENOID

1.61H@28.7Mj

MINIMUM CURRENT 597


Changes since CD-1

- Updated the requirements document to clarify and better detail the minimum requirements of the power system.
 - Updated operating currents
 - Removed the Trim power supply requirement from the PS coil
 - Increased the number of Trim power supplies for the Tsu and TSd magnets to two each.
 - Improved the wording for the Power Supply Function definition.

Value Engineering since CD-1 mu2e-Docdb 2423

 The Solenoid Power Supply Systems are very much like the TeV Low Beta Quad systems and TEL Solenoid. Because they are a very good match we have a Value Engineering agreement with Accelerator Division to reuse these power supplies.

- PS & DS Will need new dump resistors for all systems.
- will need new dump resistors for all system
- Trim Power Supplies will all be new.

Mu2e

TSu & TSd

Performance

- The requirements for the power supply system is required to track at 10⁻³ and regulate at 10⁻⁴, the Low Beta Quad System in the TeV operated at 10⁻⁵.
- We can only be as accurate as the current measurement we make, The use of DCCTs allows us to regulate to these levels.

Remaining work before CD-3

- Detailed Control Cable Drawings
- Detailed building layout
- Detailed design work the common controls

Quality Assurance

- The equipment being reused was part of the TeV in collider operation and maintained at a very high level so they are still valuable and usable.
- We will replace components that have limited life times
- Some modifications need to be done to the supplies to make them operate in two quadrant mode (+/- Voltage)

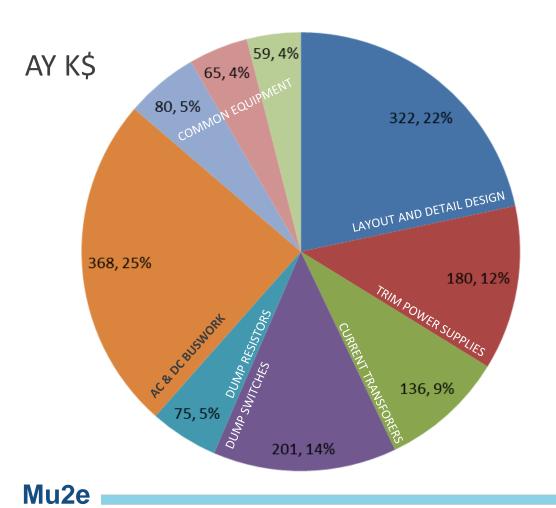
Risks

- The risk for reusing the type of equipment is reasonable and low and not included in the risk registry.
- We will be constructing new Dump Switches but they will be copies of a proven design used in the TeV.
- The trim power supplies are a new design but similar to other system used in the TeV.
- Magnetic coupling issues will need to be addressed during the detail design.

ES&H

- All of this equipment will require written Lock Out Tage Out "LOTO"s because we have multiple input power sources and large stored energy in the magnets.
- The Power Supply, Filter and Dump Racks are all separate cabinets that will require interlocking in addition to the written LOTOs.

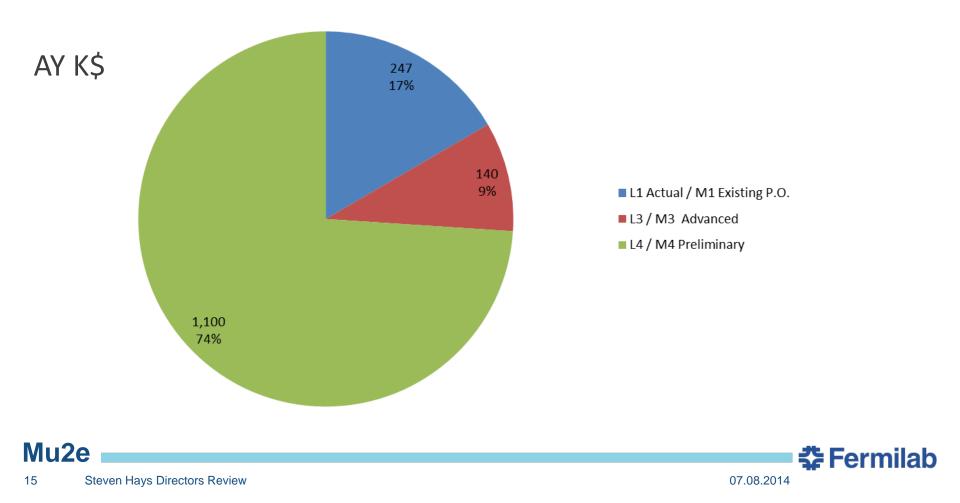
Cost Table


 Most of the labor consumed doing detailed design because we have equipment on hand and the new construction of equipment will be based on existing designs.

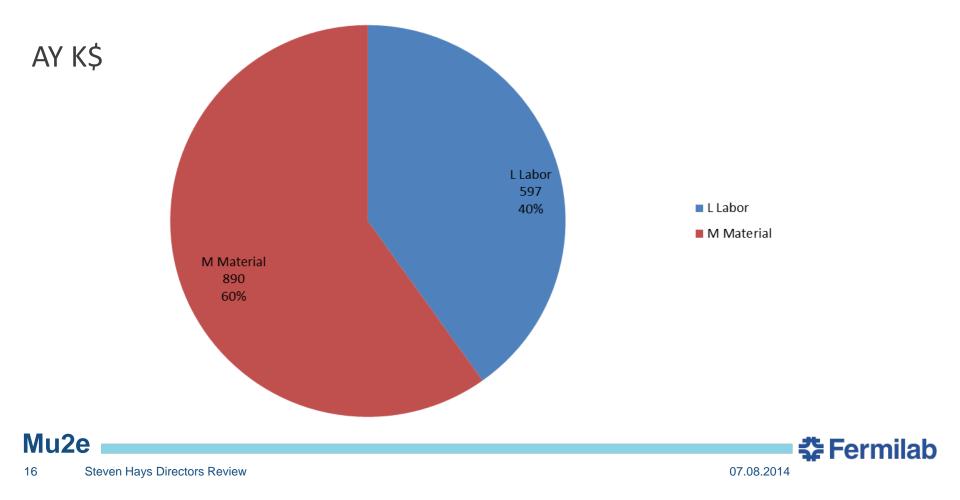
	Base Cost (AY k\$)					
	M&S	Labor	Total	Estimate Uncertainty (on remaining costs)	% Contingency on ETC	Total Cost
475.04 Solenoids						
475.04.06 Magnet Power System						
475.04.06 Magnet Power System Management	25	297	322	30	53%	352
475.04.06.01 Power Converters	90	90	180	63	35%	243
475.04.06.02 DC Current Transformers	113	23	136	40	29%	176
475.04.06.03 Dump Switches for Extraction	160	41	201	80	40%	281
475.04.06.04 Extraction Resistors	53	22	75	24	31%	99
475.04.06.05 Room Temperature Buswork	306	62	368	85	23%	453
475.04.06.06 Instrumentation	39	40	80	27	34%	107
475.04.06.07 Common Instrumentation	53	12	65	20	31%	86
475.04.06.08 VAC Transformer Relocation	50	9	59	14	23%	73
Grand Total	890	597	1,487	383	31%	1,870

Cost Breakdown

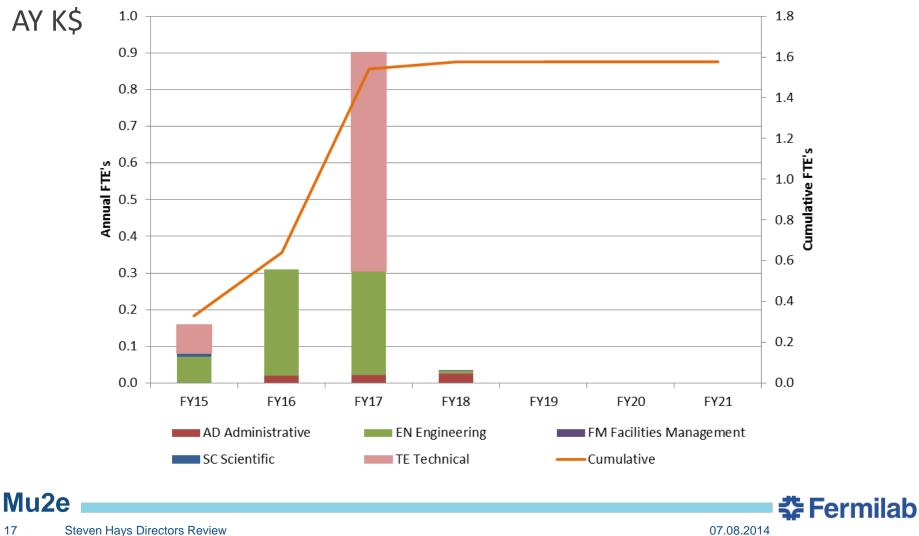
AC&DC Copper Followed by design time



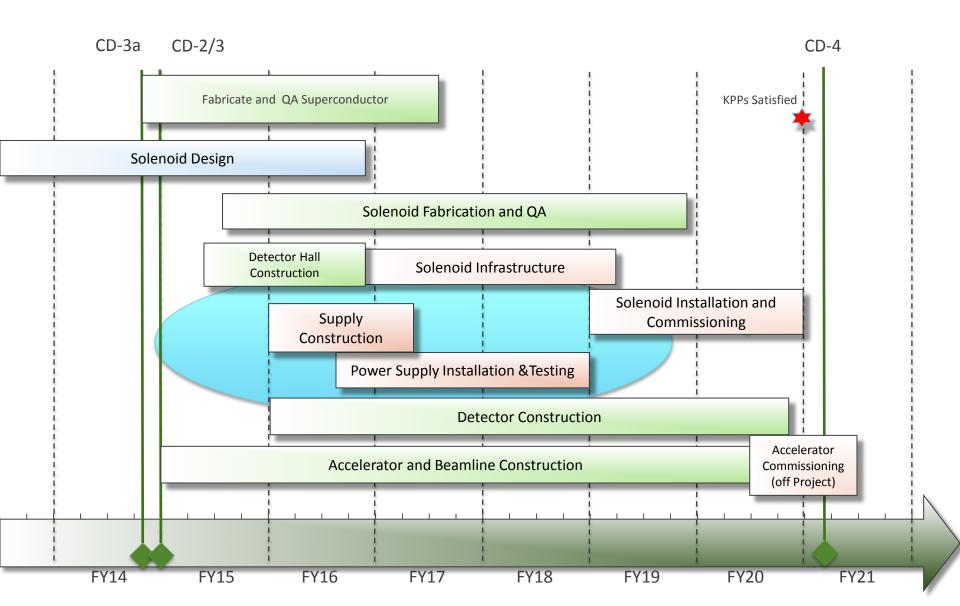
- 475.04.06 Magnet Power System 475.04.06 Magnet Power System
- 475.04.06 Magnet Power System 475.04.06.01 Power Converters
- 475.04.06 Magnet Power System 475.04.06.02 DC Current Transformers
- 475.04.06 Magnet Power System 475.04.06.03 Dump Switches for Extraction
- 475.04.06 Magnet Power System 475.04.06.04 Extraction Resistors
- 475.04.06 Magnet Power System 475.04.06.05 Room Temperature Buswork
- 475.04.06 Magnet Power System 475.04.06.06 Instrumentation


Quality of Estimate

 All equipment based on existing designs and equipment on hand but need final design


Resource Type

- Material Cost driven by two large items: Copper & Dumps
- Labor driven by detail design and Dump Switch Construction


FTE's by Discipline

Detailed design first followed by construction

17

Schedule

Summary

- By reusing existing power supplies most of the large dollar and long lead time items are on hand.
 - We will not be able to move equipment until we have the service building constructed.
 - We will need to coordinate the installation in the building with other large equipment being installed.
- The major cost in both M&S and Labor will be spend on constructing new Dump Switches and Bus work.
- We are ready to move forward on the final design.

• end

Remaining work before CD-3 extra detail

- Detailed Control Cable Drawings
 - Power Supply to Regulator/Controller
 - Regulator/Controller to Quench Protection
 - Dump Controller to Quench Protection
- Detailed building layout
 - Power Supply, Filter and Dump Switch floor plan
 - Cable tray routing
 - Bus Work routing
- Detailed design work the common controls
 - Water monitoring system that is common to all magnet loops.
 - Independent overcurrent monitors for all loops.
 - UPS system monitors.

Quality Assurance extra detail

- The equipment being reused was part of the TeV in collider operation and maintained at a very high level so they are still valuable and usable.
 - All regulation and control circuits were replaced with FNAL designs to improve the reliability early in operation.
- We will replace components that have limited life times
 - Electrolytic Capacitors in all control circuits
 - Electrolytic Capacitors in Filter bank
 - Internal low level control power supplies
- Some modifications need to be done to the supplies to make them operate in two quadrant mode (+/- Voltage)
 - We will install new proven design firing circuits for all the SCRs in the high current supplies to add the Bypass device.
 - We will replace the existing 3 circuit boards with new four circuit boards.
- High current testing will be done in AD lab before installation.
 Mu2e
 Steven Havs Directors Review

Risks extra detail

- The risk for reusing the type of equipment is reasonable and low and not included in the risk registry.
 - The Low Beta Systems operated at very close to the same level as they will in the experiment.
 - The 375kW power supplies are designed to operate at 7,500 amps each and we will only use them at 6,114 for DS and 4,600 for PS (two in parallel).
 - The TSx supplies will be 50kW supplies that are designed for 2,500 amp operation and will be used at 1,730 amps.
- We will be constructing new Dump Switches but they will be copies of a proven design used in the TeV.
- The trim power supplies are a new design but similar to other system used in the TeV. Magnetic coupling issues will need to be addressed during the detail design.

🛟 Fermilab

ES&H Extra Details

- All of this equipment will require written Lock Out Tage Out "LOTO"s because we have multiple input power sources and stored energy in the magnets.
- The Power Supply, Filter and Dump Racks are all separate cabinets that will require interlocking in addition to the written LOTOs.
 - These LOTOs will be written by AD E/E Support and be part of the department training and qualification process.
 - On large Super Conducting load we normally manage access using a registered Key system to ensure that the systems are turned Off in a controlled way. This Key system will defined by E/E support but issued by the Main Control Room in conjunction with Experiment Control Room.

